
API Documentation

API Documentation

June 16, 2009

Contents

Contents 1

1 Package networkx 2
1.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Module networkx.centrality 9
2.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Module networkx.cliques 12
3.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Module networkx.cluster 15
4.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Module networkx.component 17
5.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Module networkx.convert 20
6.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Module networkx.cores 23
7.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 Module networkx.dag 24
8.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9 Module networkx.digraph 25
9.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
9.2 Class DiGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

9.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1



CONTENTS CONTENTS

10 Module networkx.distance 34
10.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
10.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

11 Package networkx.drawing 36
11.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
11.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

12 Module networkx.drawing.layout 37
12.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
12.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

13 Module networkx.drawing.nx agraph 39
13.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
13.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

14 Module networkx.drawing.nx pydot 42
14.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
14.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

15 Module networkx.drawing.nx pylab 44
15.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
15.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

16 Module networkx.drawing.nx vtk 50
16.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
16.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

17 Module networkx.exception 51
17.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
17.2 Class NetworkXException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

17.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
17.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

17.3 Class NetworkXError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
17.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
17.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

18 Module networkx.function 54
18.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
18.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

19 Package networkx.generators 56
19.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
19.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

20 Module networkx.generators.atlas 57
20.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
20.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

21 Module networkx.generators.bipartite 58
21.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
21.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

22 Module networkx.generators.classic 62
22.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2



CONTENTS CONTENTS

22.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

23 Module networkx.generators.degree seq 68
23.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
23.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

24 Module networkx.generators.directed 78
24.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
24.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

25 Module networkx.generators.geometric 81
25.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
25.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

26 Module networkx.generators.random graphs 82
26.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
26.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

27 Module networkx.generators.small 91
27.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
27.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

28 Module networkx.graph 96
28.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
28.2 Class Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

28.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
28.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

29 Module networkx.hybrid 107
29.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
29.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

30 Module networkx.info 108
30.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

31 Module networkx.isomorph 113
31.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
31.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

32 Module networkx.isomorphvf2 115
32.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
32.2 Class GraphMatcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

32.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
32.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

32.3 Class DiGraphMatcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
32.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
32.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

32.4 Class GMState . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
32.4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
32.4.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
32.4.3 Class Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

32.5 Class DiGMState . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
32.5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
32.5.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3



CONTENTS CONTENTS

32.5.3 Class Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

33 Module networkx.operators 124
33.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
33.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

34 Module networkx.path 129
34.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
34.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

35 Package networkx.readwrite 136
35.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
35.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

36 Module networkx.readwrite.adjlist 137
36.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
36.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

37 Module networkx.readwrite.edgelist 143
37.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
37.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

38 Module networkx.readwrite.gml 146
38.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
38.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

39 Module networkx.readwrite.gpickle 148
39.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
39.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

40 Module networkx.readwrite.graphml 150
40.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
40.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

41 Module networkx.readwrite.leda 151
41.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
41.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

42 Module networkx.readwrite.nx yaml 152
42.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
42.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

43 Module networkx.readwrite.sparsegraph6 153
43.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
43.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

44 Module networkx.release 155
44.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

45 Module networkx.search 156
45.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
45.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

46 Module networkx.spectrum 158
46.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4



CONTENTS CONTENTS

46.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

47 Package networkx.tests 160
47.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
47.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

48 Module networkx.tests.benchmark 161
48.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
48.2 Class Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

48.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
48.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

49 Package networkx.tests.drawing 163
49.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

50 Package networkx.tests.generators 164
50.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

51 Package networkx.tests.readwrite 165
51.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

52 Module networkx.tests.test 166
52.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
52.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

53 Module networkx.threshold 167
53.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
53.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

54 Module networkx.tree 175
54.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
54.2 Class Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

54.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
54.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

54.3 Class RootedTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
54.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
54.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

54.4 Class DirectedTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
54.4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
54.4.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

54.5 Class Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
54.5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
54.5.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

54.6 Class DirectedForest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
54.6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
54.6.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

55 Module networkx.utils 188
55.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
55.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

56 Module networkx.xdigraph 192
56.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
56.2 Class XDiGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5



CONTENTS CONTENTS

56.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
56.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

57 Module networkx.xgraph 205
57.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
57.2 Class XGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

57.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
57.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

6



Package networkx

1 Package networkx

NetworkX

NetworkX (NX) is a Python package for the creation, manipulation, and study of the struc-
ture, dynamics, and functions of complex networks.

https://networkx.lanl.gov/

Using

Just write in Python

>>> import networkx as NX

>>> G=NX.Graph()

>>> G.add_edge(1,2)

>>> G.add_node("spam")

>>> print G.nodes()

[1, 2, ’spam’]

>>> print G.edges()

[(1, 2)]

Graph classes Graph

A simple graph that has no self-loops or multiple (parallel) edges.

An empty graph is created with

>>> G=Graph()

DiGraph

A directed graph that has no self-loops or multiple (parallel) edges. Subclass of Graph.

An empty digraph is created with

>>> G=DiGraph()

XGraph

A graph that has (optional) self-loops or multiple (parallel) edges and arbitrary data on the
edges. Subclass of Graph.

An empty graph is created with

>>> G=XGraph()

XDiGraph

7

https://networkx.lanl.gov/


Package networkx

A directed graph that has (optional) self-loops or multiple (parallel) edges and arbitrary
data on the edges.

A simple digraph that has no self-loops or multiple (parallel) edges. Subclass of DiGraph
which is a subclass of Graph.

An empty digraph is created with

>>> G=DiGraph()

The XGraph and XDiGraph classes extend the Graph and DiGraph classes by allowing (optional) self
loops, multiedges and by decorating each edge with an object x.

Each XDiGraph or XGraph edge is a 3-tuple e=(n1,n2,x), representing an edge between nodes n1 and
n2 that is decorated with the object x. Here n1 and n2 are (hashable) node objects and x is a (not
necessarily hashable) edge object. If multiedges are allowed, G.get edge(n1,n2) returns a list of edge
objects.

Whether an XGraph or XDiGraph allow self-loops or multiple edges is determined initially via pa-
rameters selfloops=True/False and multiedges=True/False. For example, the example empty XGraph
created above is equivalent to

>>> G=XGraph(selfloops=False, multiedges=False)

Similar defaults hold for XDiGraph. The command

>>> G=XDiGraph(multiedges=True)

creates an empty digraph G that does not allow selfloops but does allow for multiple (parallel) edges.
Methods exist for allowing or disallowing each feature after instatiation as well.

Note that if G is an XGraph then G.add edge(n1,n2) will add the edge (n1,n2,None), and G.delete edge(n1,n2)
will attempt to delete the edge (n1,n2,None). In the case of multiple edges between nodes n1 and n2,
one can use G.delete multiedge(n1,n2) to delete all edges between n1 and n2.

Notation The following shorthand is used throughout NetworkX documentation and code: (we use
mathematical notation n,v,w,... to indicate a node, v=vertex=node).

G,G1,G2,H,etc: Graphs

n,n1,n2,u,v,v1,v2: nodes (vertices)

nlist: a list of nodes (vertices)

nbunch: a “bunch” of nodes (vertices). An nbunch is either a single node of the graph or any iterable
container/iterator of nodes. The distinction is determined by checking if nbunch is in the graph.
If you use iterable containers as nodes you should be careful when using nbunch.

e=(n1,n2): an edge (a python “2-tuple”), also written n1-n2 (if undirected) and n1->n2 (if directed).

e=(n1,n2,x): an edge triple (“3-tuple”) containing the two nodes connected and the edge data/label/object
stored associated with the edge. The object x, or a list of objects (if multiedges=True), can be
obtained using G.get edge(n1,n2)

elist: a list of edges (as 2- or 3-tuples)

8



Package networkx

ebunch: a bunch of edges (as 2- or 3-tuples). An ebunch is any iterable (non-string) container of
edge-tuples (either 2-tuples, 3-tuples or a mixture).

Warning:

• The ordering of objects within an arbitrary nbunch/ebunch can be machine-dependent.

• Algorithms should treat an arbitrary nbunch/ebunch as once-through-and-exhausted iterable
containers.

• len(nbunch) and len(ebunch) need not be defined.

Methods Each class provides basic graph methods.

Mutating Graph methods

• G.add node(n), G.add nodes from(nlist)

• G.delete node(n), G.delete nodes from(nlist)

• G.add edge(n1,n2), G.add edge(e), where e=(u,v)

• G.add edges from(ebunch)

• G.delete edge(n1,n2), G.delete edge(e), where e=(u,v)

• G.delete edges from(ebunch)

• G.add path(nlist)

• G.add cycle(nlist)

• G.clear()

• G.subgraph(nbunch,inplace=True)

Non-mutating Graph methods

• len(G)

• G.has node(n)

• n in G (equivalent to G.has node(n))

• for n in G: (iterate through the nodes of G)

• G.nodes()

• G.nodes iter()

• G.has edge(n1,n2), G.has neighbor(n1,n2), G.get edge(n1,n2)

9



Package networkx

• G.edges(), G.edges(n), G.edges(nbunch)

• G.edges iter(), G.edges iter(n), G.edges iter(nbunch)

• G.neighbors(n)

• G[n] (equivalent to G.neighbors(n))

• G.neighbors iter(n) # iterator over neighbors

• G.number of nodes(), G.order()

• G.number of edges(), G.size()

• G.edge boundary(nbunch1), G.node boundary(nbunch1)

• G.degree(n), G.degree(nbunch)

• G.degree iter(n), G.degree iter(nbunch)

• G.is directed()

• G.info() # print variaous info about a graph

• G.prepare nbunch(nbunch) # return list of nodes in G and nbunch

Methods returning a new graph

• G.subgraph(nbunch)

• G.subgraph(nbunch,create using=H)

• G.copy()

• G.to undirected()

• G.to directed()

Implementation Notes The graph classes implement graphs using data structures based on an
adjacency list implemented as a node-centric dictionary of dictionaries. The dictionary contains keys
corresponding to the nodes and the values are dictionaries of neighboring node keys with the value None
(the Python None type) for Graph and DiGraph or user specified (default is None) for XGraph and
XDiGraph. The dictionary of dictionary structure allows fast addition, deletion and lookup of nodes
and neighbors in large graphs.

Similarities between XGraph and Graph XGraph and Graph differ in the way edge data is
handled. XGraph edges are 3-tuples (n1,n2,x) and Graph edges are 2-tuples (n1,n2). XGraph inherits
from the Graph class, and XDiGraph from the DiGraph class.

Graph and XGraph are similar in the following ways:

10



Modules Package networkx

1. Edgeless graphs are the same in XGraph and Graph. For an edgeless graph, represented by
G (member of the Graph class) and XG (member of XGraph class), there is no difference
between the datastructures G.adj and XG.adj, other than possibly in the ordering of the
keys in the adj dict.

2. Basic graph construction code for G=Graph() will also work for G=XGraph(). In the Graph
class, the simplest graph construction consists of a graph creation command G=Graph()
followed by a list of graph construction commands, consisting of successive calls to the
methods:

G.add node, G.add nodes from, G.add edge, G.add edges, G.add path, G.add cycle G.delete node,
G.delete nodes from, G.delete edge, G.delete edges from

with all edges specified as 2-tuples,

If one replaces the graph creation command with G=XGraph(), and then apply the identical
list of construction commands, the resulting XGraph object will be a simple graph G with
identical datastructure G.adj. This property ensures reuse of code developed for graph
generation in the Graph class.

Version: 0.36

Date: Tue Jun 16 14:09:53 2009

Author: Aric Hagberg <hagberg@lanl.gov> Dan Schult <dschult@colgate.edu> Pieter Swart <swart@lanl.gov>

License: LGPL

1.1 Modules

• centrality: Centrality measures.
(Section 2, p. 9)

• cliques: Cliques - Find and manipulate cliques of graphs
(Section 3, p. 12)

• cluster: Compute clustering coefficients and transitivity of graphs.
(Section 4, p. 15)

• component: Connected components and strongly connected components.
(Section 5, p. 17)

• convert: Convert NetworkX graphs to and from other formats.
(Section 6, p. 20)

• cores: Find and manipulate the k-cores of a graph
(Section 7, p. 23)

• dag: Algorithms for directed acyclic graphs (DAGs).
(Section 8, p. 24)

• digraph: Base class for digraphs.
(Section 9, p. 25)

• distance: Shortest paths, diameter, radius, eccentricity, and related methods.
(Section 10, p. 34)

• drawing (Section 11, p. 36)
– layout: Layout (positioning) algorithms for graph drawing.

(Section 12, p. 37)
– nx agraph: Interface to pygraphviz AGraph class.

(Section 13, p. 39)
– nx pydot: Import and export networkx networks to dot format using pydot.

11



Modules Package networkx

(Section 14, p. 42)
– nx pylab: Draw networks with matplotlib (pylab).

(Section 15, p. 44)
– nx vtk: Draw networks in 3d with vtk.

(Section 16, p. 50)
• exception: Base exceptions and errors for NetworkX.

(Section 17, p. 51)
• function: Functional interface to graph properties.

(Section 18, p. 54)
• generators: A package for generating various graphs in networkx.

(Section 19, p. 56)
– atlas: Generators for the small graph atlas.

(Section 20, p. 57)
– bipartite: Generators and functions for bipartite graphs.

(Section 21, p. 58)
– classic: Generators for some classic graphs.

(Section 22, p. 62)
– degree seq: Generate graphs with a given degree sequence or expected degree sequence.

(Section 23, p. 68)
– directed: Generators for some directed graphs.

(Section 24, p. 78)
– geometric: Generators for geometric graphs.

(Section 25, p. 81)
– random graphs: Generators for random graphs

(Section 26, p. 82)
– small: Various small and named graphs, together with some compact generators.

(Section 27, p. 91)
• graph: Base class for graphs.

(Section 28, p. 96)
• hybrid: Hybrid

(Section 29, p. 107)
• info: Graph

(Section 30, p. 108)
• isomorph: Fast checking to see if graphs are not isomorphic.

(Section 31, p. 113)
• isomorphvf2: An implementation of VF2 algorithm for graph ismorphism testing, as seen here:

(Section 32, p. 115)
• operators: Operations on graphs; including union, complement, subgraph.

(Section 33, p. 124)
• path: Shortest path algorithms.

(Section 34, p. 129)
• readwrite: A package for reading and writing graphs in various formats.

(Section 35, p. 136)
– adjlist: Read and write NetworkX graphs.

(Section 36, p. 137)
– edgelist: Read and write NetworkX graphs.

(Section 37, p. 143)
– gml: Read graphs in GML format.

(Section 38, p. 146)
– gpickle: Read and write NetworkX graphs.

(Section 39, p. 148)
– graphml: Read graphs in GraphML format.

(Section 40, p. 150)

12



Variables Package networkx

– leda: Read graphs in LEDA format.
(Section 41, p. 151)

– nx yaml: Read and write NetworkX graphs in YAML format.
(Section 42, p. 152)

– sparsegraph6: Read graphs in graph6 and sparse6 format.
(Section 43, p. 153)

• release: Release data for NetworkX.
(Section 44, p. 155)

• search: Search algorithms.
(Section 45, p. 156)

• spectrum: Laplacian, adjacency matrix, and spectrum of graphs.
(Section 46, p. 158)

• tests (Section 47, p. 160)
– benchmark (Section 48, p. 161)
– drawing (Section 49, p. 163)
– generators (Section 50, p. 164)
– readwrite (Section 51, p. 165)
– test (Section 52, p. 166)

• threshold: Threshold Graphs - Creation, manipulation and identification.
(Section 53, p. 167)

• tree: EXPERIMENTAL: Base classes for trees and forests.
(Section 54, p. 175)

• utils: Utilities for networkx package
(Section 55, p. 188)

• xdigraph: Base class for XDiGraph.
(Section 56, p. 192)

• xgraph: Base class for XGraph.
(Section 57, p. 205)

1.2 Variables

Name Description

package Value: ’networkx’

13



Module networkx.centrality

2 Module networkx.centrality

Centrality measures. Author: Aric Hagberg (hagberg@lanl.gov) Pieter Swart (swart@lanl.gov) Sasha
Gutfraind (ag362@cornell.edu)

2.1 Functions

brandes betweenness centrality(G, normalized=True, weighted edges=False)

Compute the betweenness centrality for nodes in G: the fraction of number of shortests
paths that pass through each node.

The keyword normalized (default=True) specifies whether the betweenness values are
normalized by b=b/(n-1)(n-2) where n is the number of nodes in G.

The keyword weighted edges (default=False) specifies whether to use edge weights
(otherwise weights are all assumed equal).

The algorithm is from Ulrik Brandes, A Faster Algorithm for Betweenness Centrality.
Journal of Mathematical Sociology 25(2):163-177, 2001.
http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf

newman betweenness centrality(G, v=None, cutoff =None, normalized=True,
weighted edges=False)

“Load” centrality for nodes.

This actually computes ’load’ and not betweenness. See
https://networkx.lanl.gov/ticket/103

The fraction of number of shortests paths that go through each node counted according to
the algorithm in

Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality, M.
E. J. Newman, Phys. Rev. E 64, 016132 (2001).

Returns a dictionary of betweenness values keyed by node. The betweenness is normalized
to be between [0,1].

If normalized=False the resulting betweenness is not normalized.

If weighted edges is True then use Dijkstra for finding shortest paths.

14

http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
https://networkx.lanl.gov/ticket/103


Functions Module networkx.centrality

betweenness centrality(G, normalized=True, weighted edges=False)

Compute the betweenness centrality for nodes in G: the fraction of number of shortests
paths that pass through each node.

The keyword normalized (default=True) specifies whether the betweenness values are
normalized by b=b/(n-1)(n-2) where n is the number of nodes in G.

The keyword weighted edges (default=False) specifies whether to use edge weights
(otherwise weights are all assumed equal).

The algorithm is from Ulrik Brandes, A Faster Algorithm for Betweenness Centrality.
Journal of Mathematical Sociology 25(2):163-177, 2001.
http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf

load centrality(G, v=None, cutoff =None, normalized=True, weighted edges=False)

“Load” centrality for nodes.

This actually computes ’load’ and not betweenness. See
https://networkx.lanl.gov/ticket/103

The fraction of number of shortests paths that go through each node counted according to
the algorithm in

Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality, M.
E. J. Newman, Phys. Rev. E 64, 016132 (2001).

Returns a dictionary of betweenness values keyed by node. The betweenness is normalized
to be between [0,1].

If normalized=False the resulting betweenness is not normalized.

If weighted edges is True then use Dijkstra for finding shortest paths.

betweenness centrality source(G, normalized=True, weighted edges=False,
sources=None)

Enchanced version of the method in centrality module that allows specifying a list of sources
(subgraph).

weighted edges:: consider edge weights by running Dijkstra’s algorithm (no effect on
unweighted graphs).

sources:: list of nodes to consider as subgraph

See Sec. 4 in Ulrik Brandes, A Faster Algorithm for Betweenness Centrality. Journal of
Mathematical Sociology 25(2):163-177, 2001.
http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf

This algorithm does not count the endpoints, i.e. a path from s to t does not contribute to
the betweenness of s and t.

15

http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
https://networkx.lanl.gov/ticket/103
http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf


Variables Module networkx.centrality

edge betweenness(G, normalized=True, weighted edges=False, sources=None)

Edge betweenness centrality.

weighted edges:: consider edge weights by running Dijkstra’s algorithm (no effect on
unweighted graphs).

sources:: list of nodes to consider as subgraph

edge load(G, nodes=False, cutoff =False)

Edge Betweenness

WARNING:

This module is for demonstration and testing purposes.

degree centrality(G, v=None)

Degree centrality for nodes (fraction of nodes connected to).

Returns a dictionary of degree centrality values keyed by node.

The degree centrality is normalized to the maximum possible degree in the graph G.

closeness centrality(G, v=None, weighted edges=False)

Closeness centrality for nodes (1/average distance to all nodes).

Returns a dictionary of closeness centrality values keyed by node. The closeness centrality is
normalized to be between 0 and 1.

2.2 Variables

Name Description

package Value: ’networkx’

16



Module networkx.cliques

3 Module networkx.cliques

Cliques - Find and manipulate cliques of graphs

Note that finding the largest clique of a graph has been shown to be an NP complete problem so the
algorithms here could take a LONG time to run. In practice it hasn’t been too bad for the graphs
tested. Date: $Date: 2005-06-15 07:56:03 -0600 (Wed, 15 Jun 2005) $

Author: Dan Schult (dschult@colgate.edu)

3.1 Functions

find cliques(G)

Find cliques algorithm based on Bron & Kerbosch

This algorithm searchs for maximal cliques in a graph. maximal cliques are the largest
complete subgraph containing a given point. The largest maximal clique is sometimes called
the maximum clique.

This algorithm produces the list of maximal cliques each of which are a list of the members
of the clique.

Based on Algol algorithm published by Bron & Kerbosch A C version is available as part of
the rambin package. http://www.ram.org/computing/rambin/rambin.html

Reference:

@article{362367,

author = {Coen Bron and Joep Kerbosch},

title = {Algorithm 457: finding all cliques of an undi-

rected graph},

journal = {Commun. ACM},

volume = {16},

number = {9},

year = {1973},

issn = {0001-0782},

pages = {575--577},

doi = {http://doi.acm.org/10.1145/362342.362367},

publisher = {ACM Press},

}

make max clique graph(G, create using=None, name=None)

Create the maximal clique graph of a graph. It finds the maximal cliques and treats these as
nodes. The nodes are connected if they have common members in the original graph. Theory
has done a lot with clique graphs, but I haven’t seen much on maximal clique graphs.

Note: This should be the same as make clique bipartite followed by project up, but it saves
all the intermediate stuff.

17

http://www.ram.org/computing/rambin/rambin.html


Functions Module networkx.cliques

make clique bipartite(G, fpos=None, create using=None, name=None)

Create a bipartite clique graph from a graph G. Nodes of G are retained as the “bottom
nodes” of B and cliques of G become “top nodes” of B. Edges are present if a bottom node
belongs to the clique represented by the top node.

Returns a Graph with additional attribute B.node type which is “Bottom” or “Top”
appropriately.

if fpos is not None, a second additional attribute B.pos is created to hold the position tuple
of each node for viewing the bipartite graph.

project down(B, create using=None, name=None)

Project a bipartite graph B down onto its “Bottom Nodes”. The nodes retain their names
and are connected if they share a common Top Node in the Bipartite Graph. Returns a
Graph.

project up(B, create using=None, name=None)

Project a bipartite graph B up onto its “Top Nodes”. The nodes retain their names and are
connected if they share a common Bottom Node in the Bipartite Graph. Returns a Graph.

graph clique number(G, cliques=None)

Return the clique number (size the largest clique) for G. Optional list of cliques can be input
if already computed.

graph number of cliques(G, cliques=None)

Returns the number of maximal cliques in G Optional list of cliques can be input if already
computed.

node clique number(G, nodes=None, with labels=False, cliques=None)

Returns the size of the largest maximal clique containing each given node.

Returns a single or list depending on input nodes. Returns a dict keyed by node if
“with labels=True”. Optional list of cliques can be input if already computed.

18



Variables Module networkx.cliques

number of cliques(G, nodes=None, cliques=None, with labels=False)

Returns the number of maximal cliques for each node.

Returns a single or list depending on input nodes. Returns a dict keyed by node if
“with labels=True”. Optional list of cliques can be input if already computed.

cliques containing node(G, nodes=None, cliques=None, with labels=False)

Returns a list of cliques containing the given node.

Returns a single list or list of lists depending on input nodes. Returns a dict keyed by node
if “with labels=True”. Optional list of cliques can be input if already computed.

3.2 Variables

Name Description

credits Value: ’’

revision Value: ’$Revision: 1021 $’

package Value: ’networkx’

19



Module networkx.cluster

4 Module networkx.cluster

Compute clustering coefficients and transitivity of graphs.

Clustering coefficient For each node find the fraction of possible triangles that are triangles, c i =
triangles i / (k i*(k i-1)/2) where k i is the degree of node i.

A coefficient for the whole graph is the average C = avg(c i)

Transitivity Find the fraction of all possible triangles which are in fact triangles. Possible triangles
are identified by the number of “triads” (two edges with a shared vertex)

T = 3*triangles/triads

Date: $Date: 2005-06-14 12:48:10 -0600 (Tue, 14 Jun 2005) $

Author: Aric Hagberg (hagberg@lanl.gov) Pieter Swart (swart@lanl.gov) Dan Schult (dschult@colgate.edu)

4.1 Functions

triangles(G, nbunch=None, with labels=False)

Return number of triangles for nbunch of nodes. If nbunch is None, then return triangles for
every node. If with labels is True, return a dict keyed by node.

Note: Each triangle is counted three times: once at each vertex.

average clustering(G)

Average clustering coefficient for a graph.

Note: this is a space saving routine; It might be faster to use clustering to get a list and then
take average.

clustering(G, nbunch=None, with labels=False, weights=False)

Clustering coefficient for each node in nbunch.

If with labels is True, return a dict keyed by node.

If both with labels and weights are True, return both a clustering coefficient dict keyed by
node and a dict of weights based on degree. The weights are the fraction of connected triples
in the graph which include the keyed node. Ths is useful in moving from transitivity for
clustering coefficient and back.

20



Variables Module networkx.cluster

transitivity(G)

Transitivity (fraction of transitive triangles) for a graph

4.2 Variables

Name Description

credits Value: ’’

revision Value: ’$Revision: 1012 $’

package Value: None

21



Module networkx.component

5 Module networkx.component

Connected components and strongly connected components. Author: Eben Kennah (ekenah@t7.lanl.gov)
Aric Hagberg (hagberg@lanl.gov)

5.1 Functions

connected components(G)

Return a list of lists of nodes in each connected component of G.

The list is ordered from largest connected component to smallest. For undirected graphs
only.

number connected components(G)

Return the number of connected components in G. For undirected graphs only.

is connected(G)

Return True if G is connected. For undirected graphs only.

connected component subgraphs(G)

Return a list of graphs of each connected component of G. The list is ordered from largest
connected component to smallest. For undirected graphs only.

For example, to get the largest connected component: >>>

H=connected component subgraphs(G)[0]

node connected component(G, n)

Return a list of nodes of the connected component containing node n.

For undirected graphs only.

22



Variables Module networkx.component

strongly connected components(G)

Returns list of strongly connected components in G. Uses Tarjan’s algorithm with Nuutila’s
modifications. Nonrecursive version of algorithm.

References:

R. Tarjan (1972). Depth-first search and linear graph algorithms. SIAM Journal
of Computing 1(2):146-160.

E. Nuutila and E. Soisalon-Soinen (1994). On finding the strongly connected
components in a directed graph. Information Processing Letters 49(1): 9-14.

kosaraju strongly connected components(G, source=None)

Returns list of strongly connected components in G. Uses Kosaraju’s algorithm.

strongly connected components recursive(G)

Returns list of strongly connected components in G. Uses Tarjan’s algorithm with Nuutila’s
modifications. this recursive version of the algorithm will hit the Python stack limit for large
graphs.

strongly connected component subgraphs(G)

Return a list of graphs of each strongly connected component of G. The list is ordered from
largest connected component to smallest.

For example, to get the largest strongly connected component: >>>

H=strongly connected component subgraphs(G)[0]

number strongly connected components(G)

Return the number of connected components in G. For undirected graphs only.

is strongly connected(G)

Return True if G is strongly connected.

5.2 Variables

Name Description

revision Value: ’’

continued on next page

23



Variables Module networkx.component

Name Description

package Value: ’networkx’

24



Module networkx.convert

6 Module networkx.convert

Convert NetworkX graphs to and from other formats.

from whatever attemps to guess the input format

Create a 10 node random digraph

>>> from networkx import *

>>> import numpy

>>> a=numpy.reshape(numpy.random.random_integers(0,1,size=100),(10,10))

>>> D=from_whatever(a,create_using=DiGraph()) # or D=DiGraph(a)

For graphviz formats see networkx.drawing.nx pygraphviz or networkx.drawing.nx pydot.

$Id: convert.py 701 2007-11-08 05:08:53Z aric $ Author: Aric Hagberg (hagberg@lanl.gov)

6.1 Functions

from whatever(thing, create using=None)

Attempt to make a NetworkX graph from an known type.

Current known types are:

any NetworkX graph dict-of-dicts dist-of-lists numpy matrix numpy ndarray
scipy sparse matrix pygraphviz agraph

to dict of lists(G, nodelist=None)

Return graph G as a Python dict of lists.

If nodelist is defined return a dict of lists with only those nodes.

Completely ignores edge data for XGraph and XDiGraph.

from dict of lists(d, create using=None)

Return a NetworkX graph G from a Python dict of lists.

to dict of dicts(G, nodelist=None, edge data=None)

Return graph G as a Python dictionary of dictionaries.

If nodelist is defined return a dict of dicts with only those nodes.

If edge data is given, the value of the dictionary will be set to edge data for all edges. This
is useful to make an adjacency matrix type representation with 1 as the edge data.

25



Functions Module networkx.convert

from dict of dicts(d, create using=None)

Return a NetworkX graph G from a Python dictionary of dictionaries.

The value of the inner dict becomes the edge data for the NetworkX graph EVEN if
create using is a NetworkX Graph which doesn’t ever use this data.

If create using is an XGraph/XDiGraph with multiedges==True, the edge data should be a
list, though this routine does not check for that.

to numpy matrix(G, nodelist=None)

Return adjacency matrix of graph as a numpy matrix.

If nodelist is defined return adjacency matrix with nodes in nodelist in the order specified. If
not the ordering is whatever order the method G.nodes() produces.

For Graph/DiGraph types which have no edge data The value of the entry A[u,v] is one if
there is an edge u-v and zero otherwise.

For XGraph/XDiGraph the edge data is assumed to be a weight and be able to be converted
to a valid numpy type (e.g. an int or a float). The value of the entry A[u,v] is the weight
given by get edge(u,v) one if there is an edge u-v and zero otherwise.

Graphs with multi-edges are not handled.

from numpy matrix(A, create using=None)

Return networkx graph G from numpy matrix adjacency list.

>>> G=from_numpy_matrix(A)

26



Variables Module networkx.convert

to scipy sparse matrix(G, nodelist=None)

Return adjacency matrix of graph as a scipy sparse matrix.

Uses lil matrix format. To convert to other formats see scipy.sparse documentation.

If nodelist is defined return adjacency matrix with nodes in nodelist in the order specified. If
not the ordering is whatever order the method G.nodes() produces.

For Graph/DiGraph types which have no edge data The value of the entry A[u,v] is one if
there is an edge u-v and zero otherwise.

For XGraph/XDiGraph the edge data is assumed to be a weight and be able to be converted
to a valid numpy type (e.g. an int or a float). The value of the entry A[u,v] is the weight
given by get edge(u,v) one if there is an edge u-v and zero otherwise.

Graphs with multi-edges are not handled.

>>> A=scipy_sparse_matrix(G)

>>> A.tocsr() # convert to compressed row storage

from scipy sparse matrix(A, create using=None)

Return networkx graph G from scipy scipy sparse matrix adjacency list.

>>> G=from_scipy_sparse_matrix(A)

6.2 Variables

Name Description

package Value: ’networkx’

27



Variables Module networkx.cores

7 Module networkx.cores

Find and manipulate the k-cores of a graph Date: $Date: 2005-03-30 16:56:28 -0700 (Wed, 30 Mar
2005) $

Author: Dan Schult(dschult@colgate.edu)

7.1 Functions

find cores(G, with labels=True)

Return the core number for each vertex.

See: arXiv:cs.DS/0310049 by Batagelj and Zaversnik

If with labels is True a dict is returned keyed by node to the core number. If with labels is
False a list of the core numbers is returned.

7.2 Variables

Name Description

credits Value: ’’

revision Value: ’$Revision: 911 $’

package Value: None

28



Variables Module networkx.dag

8 Module networkx.dag

Algorithms for directed acyclic graphs (DAGs). Author: Aric Hagberg (hagberg@lanl.gov) Dan
Schult(dschult@colgate.edu)

8.1 Functions

is directed acyclic graph(G)

Return True if the graph G is a directed acyclic graph (DAG).

Otherwise return False.

topological sort(G)

Return a list of nodes of the digraph G in topological sort order.

A topological sort is a nonunique permutation of the nodes such that an edge from u to v
implies that u appears before v in the topological sort order.

If G is not a directed acyclic graph no topological sort exists and the Python keyword None
is returned.

This algorithm is based on a description and proof at
http://www2.toki.or.id/book/AlgDesignManual/book/book2/node70.htm

See also is directed acyclic graph()

topological sort recursive(G)

Return a list of nodes of the digraph G in topological sort order.

This is a recursive version of topological sort.

8.2 Variables

Name Description

revision Value: ’’

package Value: ’networkx’

29

http://www2.toki.or.id/book/AlgDesignManual/book/book2/node70.htm


Class DiGraph Module networkx.digraph

9 Module networkx.digraph

Base class for digraphs. Author: Aric Hagberg (hagberg@lanl.gov) Pieter Swart (swart@lanl.gov) Dan
Schult(dschult@colgate.edu)

9.1 Variables

Name Description

package Value: ’networkx’

9.2 Class DiGraph

object

networkx.graph.Graph

networkx.digraph.DiGraph

Known Subclasses: networkx.xdigraph.XDiGraph, networkx.tree.DirectedForest, networkx.tree.DirectedTree

A graph with directed edges. Subclass of Graph.

DiGraph inherits from Graph, overriding the following methods:

• init : replaces self.adj with the dicts self.pred and self.succ

• add node

• delete node

• add edge

• delete edge

• add nodes from

• delete nodes from

• add edges from

• delete edges from

• edges iter

• degree iter

• copy

• clear

• subgraph

• is directed

30



Class DiGraph Module networkx.digraph

• to directed

• to undirected

Digraph adds the following methods to those of Graph:

• successors

• successors iter

• predecessors

• predecessors iter

• out degree

• out degree iter

• in degree

• in degree iter

9.2.1 Methods

init (self, data=None, name=’’)

Initialize Graph.

>>> G=Graph(name="empty")

creates empty graph G with G.name=“empty” Overrides: object. init extit(inherited
documentation)

31



Class DiGraph Module networkx.digraph

add node(self, n)

Add a single node to the digraph.

The node n can be any hashable object except None.

A hashable object is one that can be used as a key in a Python dictionary. This includes
strings, numbers, tuples of strings and numbers, etc. On many platforms this also includes
mutables such as Graphs, though one should be careful that the hash doesn’t change on
mutables.

>>> from networkx import *

>>> G=DiGraph()

>>> K3=complete_graph(3)

>>> G.add_nodes_from(K3) # add the nodes from K3 to G

>>> G.nodes()

[0, 1, 2]

>>> G.clear()

>>> G.add_node(K3) # add the graph K3 as a node in G.

>>> G.number_of_nodes()

1

Overrides: networkx.graph.Graph.add node

add nodes from(self, nlist)

Add multiple nodes to the digraph.

nlist: A container of nodes that will be iterated through once (thus it should be an iterator
or be iterable). Each element of the container should be a valid node type: any hashable type
except None. See add node for details. Overrides: networkx.graph.Graph.add nodes from

delete node(self, n)

Delete node n from the digraph. Attempting to delete a non-existent node will raise a
NetworkXError. Overrides: networkx.graph.Graph.delete node

delete nodes from(self, nlist)

Remove nodes in nlist from the digraph.

nlist: an iterable or iterator containing valid node names.

Attempting to delete a non-existent node will raise an exception. This could mean some
nodes in nlist were deleted and some valid nodes were not! Overrides:
networkx.graph.Graph.delete nodes from

32



Class DiGraph Module networkx.digraph

add edge(self, u, v=None)

Add a single directed edge (u,v) to the digraph.

>> G.add edge(u,v) and >>> G.add edge( (u,v) ) are equivalent forms of adding a single
edge between nodes u and v. The nodes u and v will be automatically added if not already
in the graph. They must be a hashable (except None) Python object.

For example, the following examples all add the edge (1,2) to the digraph G.

>>> G=DiGraph()

>>> G.add_edge( 1, 2 ) # explicit two node form

>>> G.add_edge( (1,2) ) # single edge as tuple of two nodes

>>> G.add_edges_from( [(1,2)] ) # list of edges form

Overrides: networkx.graph.Graph.add edge

add edges from(self, ebunch)

Add all the edges in ebunch to the graph.

ebunch: Container of 2-tuples (u,v). The container must be iterable or an iterator. It is
iterated over once. Adding the same edge twice has no effect and does not raise an exception.

See add edge for an example. Overrides: networkx.graph.Graph.add edges from

delete edge(self, u, v=None)

Delete the single directed edge (u,v) from the digraph.

Can be used in two basic forms >>> G.delete edge(u,v) and G.delete edge( (u,v) ) are
equivalent ways of deleting a directed edge u->v.

If the edge does not exist return without complaining. Overrides:
networkx.graph.Graph.delete edge

delete edges from(self, ebunch)

Delete the directed edges in ebunch from the digraph.

ebunch: Container of 2-tuples (u,v). The container must be iterable or an iterator. It is
iterated over once.

Edges that are not in the digraph are ignored. Overrides:
networkx.graph.Graph.delete edges from

33



Class DiGraph Module networkx.digraph

out edges iter(self, nbunch=None)

Return iterator that iterates once over each edge pointing out of nodes in nbunch, or over all
edges in digraph if no nodes are specified.

See edges() for definition of nbunch.

Nodes in nbunch that are not in the graph will be (quietly) ignored.

in edges iter(self, nbunch=None)

Return iterator that iterates once over each edge adjacent to nodes in nbunch, or over all
edges in digraph if no nodes are specified.

See edges() for definition of nbunch.

Nodes in nbunch that are not in the graph will be (quietly) ignored.

edges iter(self, nbunch=None)

Return iterator that iterates once over each edge pointing out of nodes in nbunch, or over all
edges in digraph if no nodes are specified.

See edges() for definition of nbunch.

Nodes in nbunch that are not in the graph will be (quietly) ignored. Overrides:
networkx.graph.Graph.edges iter

out edges(self, nbunch=None)

Return list of all edges that point out of nodes in nbunch, or a list of all edges in graph if no
nodes are specified.

See edges() for definition of nbunch.

Nodes in nbunch that are not in the graph will be (quietly) ignored.

in edges(self, nbunch=None)

Return list of all edges that point in to nodes in nbunch, or a list of all edges in graph if no
nodes are specified.

See edges() for definition of nbunch.

Nodes in nbunch that are not in the graph will be (quietly) ignored.

34



Class DiGraph Module networkx.digraph

successors iter(self, n)

Return an iterator for successor nodes of n.

predecessors iter(self, n)

Return an iterator for predecessor nodes of n.

successors(self, n)

Return sucessor nodes of n.

predecessors(self, n)

Return predecessor nodes of n.

out neighbors(self, n)

Return sucessor nodes of n.

in neighbors(self, n)

Return predecessor nodes of n.

neighbors(self, n)

Return sucessor nodes of n. Overrides: networkx.graph.Graph.neighbors

neighbors iter(self, n)

Return an iterator for successor nodes of n. Overrides:
networkx.graph.Graph.neighbors iter

35



Class DiGraph Module networkx.digraph

degree iter(self, nbunch=None, with labels=False)

Return iterator that returns in degree(n)+out degree(n) or (n,in degree(n)+out degree(n))
for all n in nbunch. If nbunch is ommitted, then iterate over all nodes.

Can be called in three ways: G.degree iter(n): return iterator the degree of node n
G.degree iter(nbunch): return a list of values, one for each n in nbunch (nbunch is any
iterable container of nodes.) G.degree iter(): same as nbunch = all nodes in graph.

If with labels=True, iterator will return an (n,in degree(n)+out degree(n)) tuple of node
and degree.

Any nodes in nbunch but not in the graph will be (quietly) ignored. Overrides:
networkx.graph.Graph.degree iter

in degree iter(self, nbunch=None, with labels=False)

Return iterator for in degree(n) or (n,in degree(n)) for all n in nbunch.

If nbunch is ommitted, then iterate over all nodes.

See degree iter method for more details.

out degree iter(self, nbunch=None, with labels=False)

Return iterator for out degree(n) or (n,out degree(n)) for all n in nbunch.

If nbunch is ommitted, then iterate over all nodes.

See degree iter method for more details.

out degree(self, nbunch=None, with labels=False)

Return out-degree of single node or of nbunch of nodes.

If nbunch is omitted or nbunch=None, then return out-degrees of all nodes.

in degree(self, nbunch=None, with labels=False)

Return in-degree of single node or of nbunch of nodes.

If nbunch is omitted or nbunch=None, then return in-degrees of all nodes.

36



Class DiGraph Module networkx.digraph

clear(self )

Remove name and delete all nodes and edges from digraph. Overrides:
networkx.graph.Graph.clear

copy(self )

Return a (shallow) copy of the digraph.

Identical to dict.copy() of adjacency dicts pred and succ, with name copied as well.
Overrides: networkx.graph.Graph.copy

subgraph(self, nbunch, inplace=False, create using=None)

Return the subgraph induced on nodes in nbunch.

nbunch: can be a single node or any iterable container of of nodes. (It can be an iterable or
an iterator, e.g. a list, set, graph, file, numeric array, etc.)

Setting inplace=True will return the induced subgraph in original graph by deleting nodes
not in nbunch. This overrides create using. Warning: this can destroy the graph.

Unless otherwise specified, return a new graph of the same type as self. Use (optional)
create using=R to return the resulting subgraph in R. R can be an existing graph-like
object (to be emptied) or R can be a call to a graph object, e.g. create using=DiGraph().
See documentation for empty graph()

Note: use subgraph(G) rather than G.subgraph() to access the more general subgraph()
function from the operators module. Overrides: networkx.graph.Graph.subgraph

is directed(self )

Return True if a directed graph. Overrides: networkx.graph.Graph.is directed

to undirected(self )

Return the undirected representation of the digraph.

A new graph is returned (the underlying graph). The edge u-v is in the underlying graph if
either u->v or v->u is in the digraph. Overrides: networkx.graph.Graph.to undirected

37



Class DiGraph Module networkx.digraph

to directed(self )

Return a directed representation of the digraph.

This is already directed, so merely return a copy. Overrides:
networkx.graph.Graph.to directed

reverse(self )

Return a new digraph with the same vertices and edges as G but with the directions of the
edges reversed.

Inherited from networkx.graph.Graph(Section 28.2)

contains (), getitem (), iter (), len (), str (), add cycle(), add path(),
degree(), edge boundary(), edges(), get edge(), has edge(), has neighbor(),
has node(), info(), node boundary(), nodes(), nodes iter(), number of edges(),
number of nodes(), order(), prepare nbunch(), size()

Inherited from object

delattr (), format (), getattribute (), hash (), new (), reduce (),
reduce ex (), repr (), setattr (), sizeof (), subclasshook ()

9.2.2 Properties

Name Description

Inherited from object

class

38



Module networkx.distance

10 Module networkx.distance

Shortest paths, diameter, radius, eccentricity, and related methods. Author: Aric
Hagberg (hagberg@lanl.gov) Dan Schult(dschult@colgate.edu)

10.1 Functions

eccentricity(G, v=None, sp=None, with labels=False)

Return the eccentricity of node v in G (or all nodes if v is None).

The eccentricity is the maximum of shortest paths to all other nodes.

The optional keyword sp must be a dict of dicts of shortest path length keyed
by source and target. That is, sp[v][t] is the length from v to t.

If with labels=True return dict of eccentricities keyed by vertex.

diameter(G, e=None)

Return the diameter of the graph G.

The diameter is the maximum of all pairs shortest path.

periphery(G, e=None)

Return the periphery of the graph G.

The periphery is the set of nodes with eccentricity equal to the diameter.

radius(G, e=None)

Return the radius of the graph G.

The radius is the minimum of all pairs shortest path.

39



Variables Module networkx.distance

center(G, e=None)

Return the center of graph G.

The center is the set of nodes with eccentricity equal to radius.

10.2 Variables

Name Description

package Value: ’networkx’

40



Variables Package networkx.drawing

11 Package networkx.drawing

11.1 Modules

• layout: Layout (positioning) algorithms for graph drawing.
(Section 12, p. 37)

• nx agraph: Interface to pygraphviz AGraph class.
(Section 13, p. 39)

• nx pydot: Import and export networkx networks to dot format using pydot.
(Section 14, p. 42)

• nx pylab: Draw networks with matplotlib (pylab).
(Section 15, p. 44)

• nx vtk: Draw networks in 3d with vtk.
(Section 16, p. 50)

11.2 Variables

Name Description

package Value: ’networkx.drawing’

41



Module networkx.drawing.layout

12 Module networkx.drawing.layout

Layout (positioning) algorithms for graph drawing. Date: $Date: 2005-06-15 08:53:26
-0600 (Wed, 15 Jun 2005) $

Author: Aric Hagberg (hagberg@lanl.gov) Dan Schult(dschult@colgate.edu)

12.1 Functions

circular layout(G, dim=2)

Circular layout.

Crude version that doesn’t try to minimize edge crossings.

shell layout(G, nlist=None, dim=2)

Shell layout. Crude version that doesn’t try to minimize edge crossings.

nlist is an optional list of lists of nodes to be drawn at each shell level. Only
one shell with all nodes will be drawn if not specified.

random layout(G, dim=2)

Random layout.

spring layout(G, iterations=50, dim=2, node pos=None)

Spring force model layout

spectral layout(G, dim=2, vpos=None, iterations=1000, eps=0.001)

Return the position vectors for drawing G using spectral layout.

42



Variables Module networkx.drawing.layout

graph low ev pi(uhat, G, eps=0.001, iterations=10000)

Power Iteration method to find smallest eigenvectors of Laplacian(G). Note:
constant eigenvector has eigenvalue=0 but is not included in the count of
smallest eigenvalues.

uhat -- list of p initial guesses (dicts) for the p eigenvectors. G -- The Graph
from which Laplacian is calculated. eps -- tolerance for norm of change in
eigenvalue estimate. iterations -- maximum number of iterations to use.

12.2 Variables

Name Description

credits Value: ’’

revision Value: ’$Revision: 1033 $’

package Value: ’networkx.drawing’

warningregistry Value: {(’Not importing directory

\’/usr/lib/python2.6/dist-pack...

43



Module networkx.drawing.nx agraph

13 Module networkx.drawing.nx agraph

Interface to pygraphviz AGraph class.

Usage

>>> from networkx import *

>>> G=complete_graph(5)

>>> A=to_agraph(G)

>>> H=from_agraph(A)

Author: Aric Hagberg (hagberg@lanl.gov)

13.1 Functions

from agraph(A, create using=None)

Return a NetworkX XGraph or XDiGraph from a pygraphviz graph.

>>> X=from_agraph(A)

The XGraph X will have a dictionary X.graph attr containing the default
graphviz attributes for graphs, nodes and edges.

Default node attributes will be in the dictionary X.node attr which is keyed by
node.

Edge attributes will be returned as edge data in the graph X.

If you want a Graph with no attributes attached instead of an XGraph with
attributes use

>>> G=Graph(X)

44



Functions Module networkx.drawing.nx agraph

to agraph(N, graph attr=None, node attr=None, edge attr=None,
strict=True)

Return a pygraphviz graph from a NetworkX graph N.

If N is a Graph or DiGraph, graphviz attributes can be supplied through the
arguments

graph attr: dictionary with default attributes for graph, nodes, and edges
keyed by ’graph’, ’node’, and ’edge’ to attribute dictionaries

node attr: dictionary keyed by node to node attribute dictionary

edge attr: dictionary keyed by edge tuple to edge attribute dictionary

If N is an XGraph or XDiGraph an attempt will be made first to copy
properties attached to the graph (see from agraph) and then updated with the
calling arguments if any.

write dot(G, path)

Write NetworkX graph G to Graphviz dot format on path.

Path can be a string or a file handle.

read dot(path, create using=None)

Return a NetworkX XGraph or XdiGraph from a dot file on path.

Path can be a string or a file handle.

graphviz layout(G, prog=’neato’, root=None, args=’’)

Create layout using graphviz. Returns a dictionary of positions keyed by node.

>>> from networkx import *

>>> G=petersen_graph()

>>> pos=graphviz_layout(G)

>>> pos=graphviz_layout(G,prog=’dot’)

This is a wrapper for pygraphviz layout.

45



Variables Module networkx.drawing.nx agraph

pygraphviz layout(G, prog=’neato’, root=None, args=’’)

Create layout using pygraphviz and graphviz. Returns a dictionary of
positions keyed by node.

>>> from networkx import *

>>> G=petersen_graph()

>>> pos=pygraphviz_layout(G)

>>> pos=pygraphviz_layout(G,prog=’dot’)

13.2 Variables

Name Description

package Value: ’networkx.drawing’

46



Module networkx.drawing.nx pydot

14 Module networkx.drawing.nx pydot

Import and export networkx networks to dot format using pydot.

Provides:

• write dot()

• read dot()

• graphviz layout()

• pydot layout()

• pydot from networkx()

• networkx from pydot()

Either this module or nx pygraphviz can be used to interface with graphviz.

References:

• pydot Homepage: http://www.dkbza.org/pydot.html

• Graphviz: http://www.research.att.com/sw/tools/graphviz/

• DOT Language: http://www.research.att.com/˜erg/graphviz/info/lang.html

Date: $Date: 2005-06-15 08:55:33 -0600 (Wed, 15 Jun 2005) $

Author: Aric Hagberg (hagberg@lanl.gov)

14.1 Functions

write dot(G, path=False)

Write G to a graphviz dot file.

read dot(path=False)

Creates an networkx graph from a dot file

pydot from networkx(N )

Creates a pydot graph from an networkx graph N

47

http://www.dkbza.org/pydot.html
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/~erg/graphviz/info/lang.html


Variables Module networkx.drawing.nx pydot

networkx from pydot(D, create using=None)

Creates an networkx graph from an pydot graph D

graphviz layout(G, prog=’neato’, root=None, **kwds)

Create layout using pydot and graphviz. Returns a dictionary of positions
keyed by node.

>>> pos=graphviz_layout(G)

>>> pos=graphviz_layout(G,prog=’dot’)

This is a wrapper for pydot layout.

pydot layout(G, prog=’neato’, root=None, **kwds)

Create layout using pydot and graphviz. Returns a dictionary of positions
keyed by node.

>>> pos=pydot_layout(G)

>>> pos=pydot_layout(G,prog=’dot’)

14.2 Variables

Name Description

credits Value: """"""

revision Value: "$Revision: 1034 $"

48



Module networkx.drawing.nx pylab

15 Module networkx.drawing.nx pylab

Draw networks with matplotlib (pylab).

Provides:

• draw()

• draw networkx()

• draw networkx nodes()

• draw networkx edges()

• draw networkx labels()

• draw circular

• draw random

• draw spectral

• draw spring

• draw shell

• draw graphviz

References:

• matplotlib: http://matplotlib.sourceforge.net/

• pygraphviz: http://networkx.lanl.gov/pygraphviz/

Date: $Date: 2005-06-15 11:29:39 -0600 (Wed, 15 Jun 2005) $

Author: Aric Hagberg (hagberg@lanl.gov)

49

http://matplotlib.sourceforge.net/
http://networkx.lanl.gov/pygraphviz/


Module networkx.drawing.nx pylab

50



Functions Module networkx.drawing.nx pylab

15.1 Functions

draw(G, pos=None, ax=None, hold=None, **kwds)

Draw the graph G with matplotlib (pylab).

This is a pylab friendly function that will use the current pylab figure axes
(e.g. subplot).

pos is a dictionary keyed by vertex with a two-tuple of x-y positions as the
value. See networkx.layout for functions that compute node positions.

Usage:

>>> from networkx import *

>>> G=dodecahedral_graph()

>>> draw(G)

>>> pos=graphviz_layout(G)

>>> draw(G,pos)

>>> draw(G,pos=spring_layout(G))

Also see doc/examples/draw *

for more see pylab.scatter

NB: this has the same name as pylab.draw so beware when using

>>> from networkx import *

since you will overwrite the pylab.draw function.

A good alternative is to use

>>> import pylab as P

>>> import networkx as NX

>>> G=NX.dodecahedral_graph()

and then use

>>> NX.draw(G) # networkx draw()

and >>> P.draw() # pylab draw() Parameters
nodelist: list of nodes to be drawn (default=G.nodes())

edgelist: list of edges to be drawn (default=G.edges())

node_size: scalar or array of the same length as nodelist
(default=300)

node_color: single color string or numeric/numarray array of
floats (default=’r’)

node_shape: node shape (default=’o’), or ’soˆ>v<dph8’ see
pylab.scatter

alpha: transparency (default=1.0)

cmap: colormap for mapping intensities (default=None)

51



Functions Module networkx.drawing.nx pylab

draw networkx(G, pos, with labels=True, **kwds)

Draw the graph G with given node positions pos

Usage:

>>> from networkx import *

>>> import pylab as P

>>> ax=P.subplot(111)

>>> G=dodecahedral_graph()

>>> pos=spring_layout(G)

>>> draw_networkx(G,pos,ax=ax)

This is same as ’draw’ but the node positions must be specified in the variable
pos. pos is a dictionary keyed by vertex with a two-tuple of x-y positions as
the value. See networkx.layout for functions that compute node positions.

An optional matplotlib axis can be provided through the optional keyword ax.

with labels contols text labeling of the nodes

Also see:

draw networkx nodes() draw networkx edges() draw networkx labels()

draw networkx nodes(G, pos, nodelist=None, node size=300,
node color=’r’, node shape=’o’, alpha=1.0, cmap=None, vmin=None,
vmax=None, ax=None, **kwds)

Draw nodes of graph G

This draws only the nodes of the graph G.

pos is a dictionary keyed by vertex with a two-tuple of x-y positions as the
value. See networkx.layout for functions that compute node positions.

nodelist is an optional list of nodes in G to be drawn. If provided only the
nodes in nodelist will be drawn.

see draw networkx for the list of other optional parameters.

52



Functions Module networkx.drawing.nx pylab

draw networkx edges(G, pos, edgelist=None, width=1.0, edge color=’k’,
style=’solid’, alpha=1.0, edge cmap=None, edge vmin=None,
edge vmax=None, ax=None, arrows=True, **kwds)

Draw the edges of the graph G

This draws only the edges of the graph G.

pos is a dictionary keyed by vertex with a two-tuple of x-y positions as the
value. See networkx.layout for functions that compute node positions.

edgelist is an optional list of the edges in G to be drawn. If provided, only the
edges in edgelist will be drawn.

For directed graphs, “arrows” (actually just thicker stubs) are drawn at the
head end. Arrows can be turned off with keyword arrows=False.

See draw networkx for the list of other optional parameters.

draw networkx labels(G, pos, labels=None, font size=12, font color=’k’,
font family=’sans-serif’, font weight=’normal’, alpha=1.0, ax=None,
**kwds)

Draw node labels on the graph G

pos is a dictionary keyed by vertex with a two-tuple of x-y positions as the
value. See networkx.layout for functions that compute node positions.

labels is an optional dictionary keyed by vertex with node labels as the values.
If provided only labels for the keys in the dictionary are drawn.

See draw networkx for the list of other optional parameters.

draw circular(G, **kwargs)

Draw the graph G with a circular layout

draw random(G, **kwargs)

Draw the graph G with a random layout.

53



Variables Module networkx.drawing.nx pylab

draw spectral(G, **kwargs)

Draw the graph G with a spectral layout.

draw spring(G, **kwargs)

Draw the graph G with a spring layout

draw shell(G, **kwargs)

Draw networkx graph with shell layout

draw graphviz(G, prog=’neato’, **kwargs)

Draw networkx graph with graphviz layout

draw nx(G, pos, **kwds)

For backward compatibility; use draw or draw networkx

15.2 Variables

Name Description

credits Value: ’’

revision Value: ’$Id’

package Value: ’networkx.drawing’

54



Variables Module networkx.drawing.nx vtk

16 Module networkx.drawing.nx vtk

Draw networks in 3d with vtk.

References:

• vtk: http://www.vtk.org/

Date: $Date: 2005-06-17 08:10:29 -0600 (Fri, 17 Jun 2005) $

Author: Aric Hagberg (hagberg@lanl.gov)

16.1 Functions

draw nxvtk(G, node pos)

Draw networkx graph in 3d with nodes at node pos.

See layout.py for functions that compute node positions.

node pos is a dictionary keyed by vertex with a three-tuple of x-y positions as
the value.

The node color is plum. The edge color is banana.

All the nodes are the same size.

16.2 Variables

Name Description

credits Value: ’’

revision Value: ’$Revision: 1051 $’

package Value: ’networkx.drawing’

55

http://www.vtk.org/


Class NetworkXException Module networkx.exception

17 Module networkx.exception

Base exceptions and errors for NetworkX. Author: Aric Hagberg (hagberg@lanl.gov)
Pieter Swart (swart@lanl.gov) Dan Schult(dschult@colgate.edu)

17.1 Variables

Name Description

package Value: None

17.2 Class NetworkXException

object

exceptions.BaseException

exceptions.Exception

networkx.exception.NetworkXException

Known Subclasses: networkx.exception.NetworkXError

Base class for exceptions in NetworkX.

17.2.1 Methods

Inherited from exceptions.Exception

init (), new ()

Inherited from exceptions.BaseException

delattr (), getattribute (), getitem (), getslice (), reduce (), repr (),
setattr (), setstate (), str (), unicode ()

Inherited from object

format (), hash (), reduce ex (), sizeof (), subclasshook ()

17.2.2 Properties

56



Class NetworkXError Module networkx.exception

Name Description

Inherited from exceptions.BaseException

args, message

Inherited from object

class

17.3 Class NetworkXError

object

exceptions.BaseException

exceptions.Exception

networkx.exception.NetworkXException

networkx.exception.NetworkXError

Exception for a serious error in NetworkX

17.3.1 Methods

Inherited from exceptions.Exception

init (), new ()

Inherited from exceptions.BaseException

delattr (), getattribute (), getitem (), getslice (), reduce (), repr (),
setattr (), setstate (), str (), unicode ()

Inherited from object

format (), hash (), reduce ex (), sizeof (), subclasshook ()

17.3.2 Properties

Name Description

Inherited from exceptions.BaseException

args, message

Inherited from object

continued on next page

57



Class NetworkXError Module networkx.exception

Name Description

class

58



Module networkx.function

18 Module networkx.function

Functional interface to graph properties. Author: Aric Hagberg (hagberg@lanl.gov)
Pieter Swart (swart@lanl.gov) Dan Schult(dschult@colgate.edu)

18.1 Functions

nodes(G)

Return a copy of the graph nodes in a list.

nodes iter(G)

Return an iterator over the graph nodes.

edges(G, nbunch=None)

Return list of edges adjacent to nodes in nbunch.

Return all edges if nbunch is unspecified or nbunch=None.

For digraphs, edges=out edges

edges iter(G, nbunch=None)

Return iterator over edges adjacent to nodes in nbunch.

Return all edges if nbunch is unspecified or nbunch=None.

For digraphs, edges=out edges

degree(G, nbunch=None, with labels=False)

Return degree of single node or of nbunch of nodes. If nbunch is ommitted,
then return degrees of all nodes.

59



Variables Module networkx.function

neighbors(G, n)

Return a list of nodes connected to node n.

number of nodes(G)

Return the order of a graph = number of nodes.

number of edges(G)

Return the size of a graph = number of edges.

density(G)

Return the density of a graph.

density = size/(order*(order-1)/2) density()=0.0 for an edge-less graph and
1.0 for a complete graph.

degree histogram(G)

Return a list of the frequency of each degree value.

The degree values are the index in the list. Note: the bins are width one,
hence len(list) can be large (Order(number of edges))

is directed(G)

Return True if graph is directed.

18.2 Variables

Name Description

package Value: None

60



Variables Package networkx.generators

19 Package networkx.generators

A package for generating various graphs in networkx.

19.1 Modules

• atlas: Generators for the small graph atlas.
(Section 20, p. 57)

• bipartite: Generators and functions for bipartite graphs.
(Section 21, p. 58)

• classic: Generators for some classic graphs.
(Section 22, p. 62)

• degree seq: Generate graphs with a given degree sequence or expected degree
sequence.
(Section 23, p. 68)

• directed: Generators for some directed graphs.
(Section 24, p. 78)

• geometric: Generators for geometric graphs.
(Section 25, p. 81)

• random graphs: Generators for random graphs
(Section 26, p. 82)

• small: Various small and named graphs, together with some compact generators.
(Section 27, p. 91)

19.2 Variables

Name Description

package Value: ’networkx.generators’

61



Variables Module networkx.generators.atlas

20 Module networkx.generators.atlas

Generators for the small graph atlas.

See “An Atlas of Graphs” by Ronald C. Read and Robin J. Wilson, Oxford University
Press, 1998.

Because of its size, this module is not imported by default. Date: $Date: 2005-03-30
16:56:28 -0700 (Wed, 30 Mar 2005) $

Author: Pieter Swart (swart@lanl.gov)

20.1 Functions

graph atlas g()

Return the list [G0,G1,...,G1252] of graphs as named in the Graph Atlas.
G0,G1,...,G1252 are all graphs with up to 7 nodes.

The graphs are listed:

1. in increasing order of number of nodes;

2. for a fixed number of nodes, in increasing order of the number of
edges;

3. for fixed numbers of nodes and edges, in increasing order of the
degree sequence, for example 111223 < 112222;

4. for fixed degree sequence, in increasing number of
automorphisms.

Note that indexing is set up so that for GAG=graph atlas g(), then
G123=GAG[123] and G[0]=empty graph(0)

20.2 Variables

Name Description

credits Value: ’’

revision Value: ’$Revision: 911 $’

package Value: ’networkx.generators’

62



Module networkx.generators.bipartite

21 Module networkx.generators.bipartite

Generators and functions for bipartite graphs. Author: Aric Hagberg (hagberg@lanl.gov)
Pieter Swart (swart@lanl.gov) Dan Schult (dschult@colgate.edu)

21.1 Functions

bipartite configuration model(aseq, bseq, create using=None, seed=None)

Return a random bipartite graph from two given degree sequences.

Nodes from the set A are connected to nodes in the set B by choosing
randomly from the possible free stubs, one in A and one in B.

The sum of the two sequences must be equal: sum(aseq)=sum(bseq)

If no graph type is specified use XGraph with parallel edges.

If you want a graph with no parallel edges use create using=Graph() but then
the resulting degree sequences might not be exact. Parameters

aseq: degree sequence for node set A

bseq: degree sequence for node set B

bipartite havel hakimi graph(aseq, bseq, create using=None)

Return a bipartite graph from two given degree sequences using a
Havel-Hakimi style construction.

Nodes from the set A are connected to nodes in the set B by connecting the
highest degree nodes in set A to the highest degree nodes in set B until all
stubs are connected.

The sum of the two sequences must be equal: sum(aseq)=sum(bseq)
Parameters

aseq: degree sequence for node set A

bseq: degree sequence for node set B

63



Functions Module networkx.generators.bipartite

bipartite reverse havel hakimi graph(aseq, bseq, create using=None)

Return a bipartite graph from two given degree sequences using a “reverse”
Havel-Hakimi style construction.

Nodes from the set A are connected to nodes in the set B by connecting the
highest degree nodes in set A to the lowest degree nodes in set B until all
stubs are connected.

The sum of the two sequences must be equal: sum(aseq)=sum(bseq)
Parameters

aseq: degree sequence for node set A

bseq: degree sequence for node set B

bipartite alternating havel hakimi graph(aseq, bseq, create using=None)

Return a bipartite graph from two given degree sequences using a alternating
Havel-Hakimi style construction.

Nodes from the set A are connected to nodes in the set B by connecting the
highest degree nodes in set A to alternatively the highest and the lowest
degree nodes in set B until all stubs are connected.

The sum of the two sequences must be equal: sum(aseq)=sum(bseq)
Parameters

aseq: degree sequence for node set A

bseq: degree sequence for node set B

64



Functions Module networkx.generators.bipartite

bipartite preferential attachment graph(aseq, p, create using=None)

Create a bipartite graph with a preferential attachment model from a given
single “top” degree sequence.

Reference:

@article{guillaume-2004-bipartite,

author = {Jean-Loup Guillaume and Matthieu Latapy},

title = {Bipartite structure of all complex networks},

journal = {Inf. Process. Lett.},

volume = {90},

number = {5},

year = {2004},

issn = {0020-0190},

pages = {215--221},

doi = {http://dx.doi.org/10.1016/j.ipl.2004.03.007},

publisher = {Elsevier North-Holland, Inc.},

address = {Amsterdam, The Netherlands, The Nether-

lands},

}

Parameters
aseq: degree sequence for node set A (top)

p: probability that a new bottom node is added

bipartite random regular graph(d, n, create using=None)

UNTESTED:Generate a random bipartite graph of n nodes each with degree d.

Restrictions on n and d:

• n must be even

• n>=2*d

Nodes are numbered 0...n-1.

Algorithm inspired by random regular graph()

65



Variables Module networkx.generators.bipartite

project(B, nodes, create using=None)

Returns a graph that is the projection of the bipartite graph B onto the set of
nodes given in list nodes.

The nodes retain their names and are connected if they share a common node
in the node set of {B not nodes }.

No attempt is made to verify that the input graph B is bipartite.

bipartite color(G)

is bipartite(G)

Returns True if graph G is bipartite, False if not.

Traverse the graph G with depth-first-search and color nodes.

bipartite sets(G)

Returns (X,Y) where X and Y are the nodes in each bipartite set of graph G.
Fails with an error if graph is not bipartite.

21.2 Variables

Name Description

package Value: ’networkx.generators’

66



Module networkx.generators.classic

22 Module networkx.generators.classic

Generators for some classic graphs.

The typical graph generator is called as follows:

>>> G=complete_graph(100)

returning the complete graph on n nodes labeled 0,..,99 as a simple graph. Except for
empty graph, all the generators in this module return a Graph class (i.e. a simple,
undirected graph). Date: $Date: 2005-06-17 14:06:03 -0600 (Fri, 17 Jun 2005) $

Author: Aric Hagberg (hagberg@lanl.gov) Pieter Swart (swart@lanl.gov)

22.1 Functions

balanced tree(r, h)

Return the perfectly balanced r-tree of height h.

For r>=2, h>=1, this is the rooted tree where all leaves are at distance h from
the root. The root has degree r and all other internal nodes have degree r+1.

number of nodes = 1+r+r**2+...+r**h = (r**(h+1)-1)/(r-1),
number of edges = number of nodes - 1.

Node labels are the integers 0 (the root) up to number of nodes - 1.

67



Functions Module networkx.generators.classic

barbell graph(m1, m2 )

Return the Barbell Graph: two complete graphs connected by a path.

For m1 > 1 and m2 >= 0.

Two identical complete graphs K {m1} form the left and right bells, and are
connected by a path P {m2}.

The 2*m1+m2 nodes are numbered 0,...,m1-1 for the left barbell,
m1,...,m1+m2-1 for the path, and m1+m2,...,2*m1+m2-1 for the right
barbell.

The 3 subgraphs are joined via the edges (m1-1,m1) and (m1+m2-1,m1+m2).
If m2=0, this is merely two complete graphs joined together.

This graph is an extremal example in David Aldous and Jim Fill’s etext on
Random Walks on Graphs.

complete graph(n, create using=None)

Return the Complete graph K n with n nodes.

Node labels are the integers 0 to n-1.

complete bipartite graph(n1, n2 )

Return the complete bipartite graph K {n1 n2}.

Composed of two partitions with n1 nodes in the first and n2 nodes in the
second. Each node in the first is connected to each node in the second.

Node labels are the integers 0 to n1+n2-1

circular ladder graph(n)

Return the circular ladder graph CL n of length n.

CL n consists of two concentric n-cycles in which each of the n pairs of
concentric nodes are joined by an edge.

Node labels are the integers 0 to n-1

68



Functions Module networkx.generators.classic

cycle graph(n, create using=None)

Return the cycle graph C n over n nodes.

C n is the n-path with two end-nodes connected.

Node labels are the integers 0 to n-1 If create using is a DiGraph, the direction
is in increasing order.

dorogovtsev goltsev mendes graph(n)

Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph.

n is the generation. See: arXiv:/cond-mat/0112143 by Dorogovtsev, Goltsev
and Mendes.

69



Functions Module networkx.generators.classic

empty graph(n=0, create using=None)

Return the empty graph with n nodes and zero edges.

Node labels are the integers 0 to n-1

For example: >>> from networkx import * >>> G=empty graph(10) >>>

G.number of nodes() 10 >>> G.number of edges() 0

The variable create using should point to a “graph”-like object that will be
cleaned (nodes and edges will be removed) and refitted as an empty “graph”
with n nodes with integer labels. This capability is useful for specifying the
class-nature of the resulting empty “graph” (i.e. Graph, DiGraph,
MyWeirdGraphClass, etc.).

The variable create using has two main uses: Firstly, the variable create using
can be used to create an empty digraph, network,etc. For example,

>>> n=10

>>> G=empty_graph(n,create_using=DiGraph())

will create an empty digraph on n nodes.

Secondly, one can pass an existing graph (digraph, pseudograph, etc.) via
create using. For example, if G is an existing graph (resp. digraph,
pseudograph, etc.), then empty graph(n,create using=G) will empty G (i.e.
delete all nodes and edges using G.clear() in base) and then add n nodes and
zero edges, and return the modified graph (resp. digraph, pseudograph, etc.).

See also create empty copy(G).

grid 2d graph(m, n, periodic=False)

Return the 2d grid graph of mxn nodes, each connected to its nearest
neighbors. Optional argument periodic=True will connect boundary nodes via
periodic boundary conditions.

70



Functions Module networkx.generators.classic

grid graph(dim, periodic=False)

Return the n-dimensional grid graph.

The dimension is the length of the list ’dim’ and the size in each dimension is
the value of the list element.

E.g. G=grid graph(dim=[2,3]) produces a 2x3 grid graph.

If periodic=True then join grid edges with periodic boundary conditions.

hypercube graph(n)

Return the n-dimensional hypercube.

Node labels are the integers 0 to 2**n - 1.

ladder graph(n)

Return the Ladder graph of length n.

This is two rows of n nodes, with each pair connected by a single edge.

Node labels are the integers 0 to 2*n - 1.

lollipop graph(m, n)

Return the Lollipop Graph; K m connected to P n.

This is the Barbell Graph without the right barbell.

For m>1 and n>=0, the complete graph K m is connected to the path P n.
The resulting m+n nodes are labelled 0,...,m-1 for the complete graph and
m,...,m+n-1 for the path. The 2 subgraphs are joined via the edge (m-1,m). If
n=0, this is merely a complete graph.

Node labels are the integers 0 to number of nodes - 1.

(This graph is an extremal example in David Aldous and Jim Fill’s etext on
Random Walks on Graphs.)

71



Variables Module networkx.generators.classic

null graph(create using=None)

Return the Null graph with no nodes or edges.

See empty graph for the use of create using.

path graph(n, create using=None)

Return the Path graph P n of n nodes linearly connected by n-1 edges.

Node labels are the integers 0 to n - 1. If create using is a DiGraph then the
edges are directed in increasing order.

star graph(n)

Return the Star graph with n+1 nodes: one center node, connected to n
outer nodes.

Node labels are the integers 0 to n.

trivial graph()

Return the Trivial graph with one node (with integer label 0) and no edges.

wheel graph(n)

Return the wheel graph: a single hub node connected to each node of
the (n-1)-node cycle graph.

Node labels are the integers 0 to n - 1.

22.2 Variables

Name Description

credits Value: ’’

revision Value: ’$Revision: 1056 $’

package Value: ’networkx.generators’

72



Module networkx.generators.degree seq

23 Module networkx.generators.degree seq

Generate graphs with a given degree sequence or expected degree sequence. Author:
Aric Hagberg (hagberg@lanl.gov) Pieter Swart (swart@lanl.gov) Dan Schult (dschult@colgate.edu)

73



Module networkx.generators.degree seq

74



Functions Module networkx.generators.degree seq

23.1 Functions

configuration model(deg sequence, seed=None)

Return a random pseudograph with the given degree sequence.

• deg_sequence: degree sequence, a list of integers with each entry
corresponding to the degree of a node (need not be sorted).
A non-graphical degree sequence (i.e. one not realizable by
some simple graph) will raise an Exception.

• seed: seed for random number generator (default=None)

>>> z=create_degree_sequence(100,powerlaw_sequence)

>>> G=configuration_model(z)

The pseudograph G is a networkx.XGraph that allows multiple (parallel) edges
between nodes and edges that connect nodes to themseves (self loops).

To remove self-loops:

>>> G.ban_selfloops()

To remove parallel edges:

>>> G.ban_multiedges()

Steps:

• Check if deg sequence is a valid degree sequence.

• Create N nodes with stubs for attaching edges

• Randomly select two available stubs and connect them with an
edge.

As described by Newman [newman-2003-structure].

Nodes are labeled 1,.., len(deg sequence), corresponding to their position in
deg sequence.

This process can lead to duplicate edges and loops, and therefore returns a
pseudograph type. You can remove the self-loops and parallel edges (see
above) with the likely result of not getting the exat degree sequence specified.
This “finite-size effect” decreases as the size of the graph increases.

References:

[newman-2003-structure] M.E.J. Newman, “The structure and function of
complex networks”, SIAM REVIEW 45-2, pp 167-256, 2003.

75



Functions Module networkx.generators.degree seq

expected degree graph(w, seed=None)

Return a random graph G(w) with expected degrees given by w.

>>> z=[10 for i in range(100)]

>>> G=expected_degree_graph(z)

To remove self-loops:

>>> G.ban_selfloops()

Reference:

@Article{connected-components-2002,

author = {Fan Chung and L. Lu},

title = {Connected components in random graphs

with given expected degree sequences},

journal = {Ann. Combinatorics},

year = {2002},

volume = {6},

pages = {125-145},

}

Parameters
w: a list of expected degrees

seed: seed for random number generator (default=None)

76



Functions Module networkx.generators.degree seq

havel hakimi graph(deg sequence, seed=None)

Return a simple graph with given degree sequence, constructed using the
Havel-Hakimi algorithm.

• deg_sequence: degree sequence, a list of integers with each entry
corresponding to the degree of a node (need not be sorted).
A non-graphical degree sequence (not sorted). A
non-graphical degree sequence (i.e. one not realizable by
some simple graph) raises an Exception.

• seed: seed for random number generator (default=None)

The Havel-Hakimi algorithm constructs a simple graph by successively
connecting the node of highest degree to other nodes of highest degree,
resorting remaining nodes by degree, and repeating the process. The resulting
graph has a high degree-associativity. Nodes are labeled 1,..,
len(deg sequence), corresponding to their position in deg sequence.

See Theorem 1.4 in [chartrand-graphs-1996]. This algorithm is also used in the
function is valid degree sequence.

References:

[chartrand-graphs-1996] G. Chartrand and L. Lesniak, “Graphs and Digraphs”,
Chapman and Hall/CRC, 1996.

degree sequence tree(deg sequence)

Make a tree for the given degree sequence.

A tree has #nodes-#edges=1 so the degree sequence must have
len(deg sequence)-sum(deg sequence)/2=1

77



Functions Module networkx.generators.degree seq

is valid degree sequence(deg sequence)

Return True if deg sequence is a valid sequence of integer degrees equal to the
degree sequence of some simple graph.

• deg_sequence: degree sequence, a list of integers with each entry
corresponding to the degree of a node (need not be sorted).
A non-graphical degree sequence (i.e. one not realizable by
some simple graph) will raise an exception.

See Theorem 1.4 in [chartrand-graphs-1996]. This algorithm is also used in
havel hakimi graph()

References:

[chartrand-graphs-1996] G. Chartrand and L. Lesniak, “Graphs and Digraphs”,
Chapman and Hall/CRC, 1996.

create degree sequence(n, sfunction=None, max tries=50, **kwds)

Attempt to create a valid degree sequence of length n using specified function
sfunction(n,**kwds).

• n: length of degree sequence = number of nodes

• sfunction: a function, called as “sfunction(n,**kwds)”,
that returns a list of n real or integer values.

• max_tries: max number of attempts at creating valid degree
sequence.

Repeatedly create a degree sequence by calling sfunction(n,**kwds) until
achieving a valid degree sequence. If unsuccessful after max tries attempts,
raise an exception.

For examples of sfunctions that return sequences of random numbers, see
networkx.Utils.

>>> from networkx.utils import *

>>> seq=create_degree_sequence(10,uniform_sequence)

78



Functions Module networkx.generators.degree seq

double edge swap(G, nswap=1)

Attempt nswap double-edge swaps on the graph G.

Return count of successful swaps. The graph G is modified in place. A
double-edge swap removes two randomly choseen edges u-v and x-y and
creates the new edges u-x and v-y:

u--v u v

becomes | |

x--y x y

If either the edge u-x or v-y already exist no swap is performed so the actual
count of swapped edges is always <= nswap

Does not enforce any connectivity constraints.

79



Functions Module networkx.generators.degree seq

connected double edge swap(G, nswap=1)

Attempt nswap double-edge swaps on the graph G.

Returns count of successful swaps. Enforces connectivity. The graph G is
modified in place.

A double-edge swap removes two randomly choseen edges u-v and x-y and
creates the new edges u-x and v-y:

u--v u v

becomes | |

x--y x y

If either the edge u-x or v-y already exist no swap is performed so the actual
count of swapped edges is always <= nswap

The initial graph G must be connected and the resulting graph is connected.

Reference:

@misc{gkantsidis-03-markov,

author = "C. Gkantsidis and M. Mihail and E. Zegura",

title = "The Markov chain simulation method for generat-

ing connected

power law random graphs",

year = "2003",

url = "http://citeseer.ist.psu.edu/gkantsidis03markov.html"

}

80



Functions Module networkx.generators.degree seq

li smax graph(degree seq)

Generates a graph based with a given degree sequence and maximizing the
s-metric. Experimental implementation.

Maximum s-metrix means that high degree nodes are connected to high degree
nodes.

• degree_seq: degree sequence, a list of integers with each entry
corresponding to the degree of a node. A non-graphical degree
sequence raises an Exception.

Reference:

@unpublished{li-2005,

author = {Lun Li and David Alderson and Reiko Tanaka

and John C. Doyle and Walter Willinger},

title = {Towards a Theory of Scale-Free Graphs:

Definition, Properties, and Implications (Ex-

tended Version)},

url = {http://arxiv.org/abs/cond-mat/0501169},

year = {2005}

}

The algorithm:

STEP 0 - Initialization

A = {0}

B = {1, 2, 3, ..., n}

O = {(i; j), ..., (k, l),...} where i < j, i <= k < l and

d_i * d_j >= d_k *d_l

wA = d_1

dB = sum(degrees)

STEP 1 - Link selection

(a) If |O| = 0 TERMINATE. Return graph A.

(b) Select element(s) (i, j) in O hav-

ing the largest d_i * d_j , if for

any i or j ei-

ther w_i = 0 or w_j = 0 delete (i, j) from O

(c) If there are no elements selected go to (a).

(d) Select the link (i, j) hav-

ing the largest value w_i (where for each

(i, j) w_i is the smaller of w_i and w_j ), and pro-

ceed to STEP 2.

STEP 2 - Link addition

Type 1: i in A and j in B.

Add j to the graph A and re-

move it from the set B add a link

(i, j) to the graph A. Update variables:

wA = wA + d_j -2 and dB = dB - d_j

81

mailto:sundsdal@gmail.com


Variables Module networkx.generators.degree seq

connected smax graph(degree seq)

Not implemented.

s metric(G)

Return the “s-Metric” of graph G: the sum of the product deg(u)*deg(v) for
every edge u-v in G

Reference:

@unpublished{li-2005,

author = {Lun Li and David Alderson and

John C. Doyle and Walter Willinger},

title = {Towards a Theory of Scale-Free Graphs:

Definition, Properties, and Implications (Ex-

tended Version)},

url = {http://arxiv.org/abs/cond-mat/0501169},

year = {2005}

}

23.2 Variables

Name Description

package Value: ’networkx.generators’

82



Module networkx.generators.directed

24 Module networkx.generators.directed

Generators for some directed graphs.

gn graph: growing network gnc graph: growing network with copying gnr graph: grow-
ing network with redirection Author: Aric Hagberg (hagberg@lanl.gov)

24.1 Functions

gn graph(n, kernel=<function <lambda> at 0x27d21b8>, seed=None)

Return the GN (growing network) digraph with n nodes.

The graph is built by adding nodes one at a time with a link to one previously
added node. The target node for the link is chosen with probability based on
degree. The default attachment kernel is a linear function of degree.

The graph is always a (directed) tree.

Example:

>>> D=gn_graph(10) # the GN graph

>>> G=D.to_undirected() # the undirected version

To specify an attachment kernel use the kernel keyword

>>> D=gn_graph(10,kernel=lambda x:x**1.5) # A_k=k^1.5

Reference:

@article{krapivsky-2001-organization,

title = {Organization of Growing Random Networks},

author = {P. L. Krapivsky and S. Redner},

journal = {Phys. Rev. E},

volume = {63},

pages = {066123},

year = {2001},

}

83



Functions Module networkx.generators.directed

gnr graph(n, p, seed=None)

Return the GNR (growing network with redirection) digraph with n nodes and
redirection probability p.

The graph is built by adding nodes one at a time with a link to one previously
added node. The previous target node is chosen uniformly at random. With
probabiliy p the link is instead “redirected” to the successor node of the target.
The graph is always a (directed) tree.

Example:

>>> D=gnr_graph(10,0.5) # the GNR graph

>>> G=D.to_undirected() # the undirected version

Reference:

@article{krapivsky-2001-organization,

title = {Organization of Growing Random Networks},

author = {P. L. Krapivsky and S. Redner},

journal = {Phys. Rev. E},

volume = {63},

pages = {066123},

year = {2001},

}

gnc graph(n, seed=None)

Return the GNC (growing network with copying) digraph with n nodes.

The graph is built by adding nodes one at a time with a links to one previously
added node (chosen uniformly at random) and to all of that node’s successors.

Reference:

@article{krapivsky-2005-network,

title = {Network Growth by Copying},

author = {P. L. Krapivsky and S. Redner},

journal = {Phys. Rev. E},

volume = {71},

pages = {036118},

year = {2005},

}

84



Variables Module networkx.generators.directed

24.2 Variables

Name Description

package Value: ’networkx.generators’

85



Variables Module networkx.generators.geometric

25 Module networkx.generators.geometric

Generators for geometric graphs. Date: $Date: 2005-06-15 12:44:45 -0600 (Wed, 15 Jun
2005) $

Author: Aric Hagberg (hagberg@lanl.gov) Pieter Swart (swart@lanl.gov)

25.1 Functions

random geometric graph(n, radius, create using=None, repel=0.0,
verbose=False, dim=2)

Random geometric graph in the unit cube

Returned Graph has added attribute G.pos which is a dict keyed by node to
the position tuple for the node.

25.2 Variables

Name Description

credits Value: ’’

revision Value: ’$Revision: 1038 $’

package Value: ’networkx.generators’

86



Module networkx.generators.random graphs

26 Module networkx.generators.random graphs

Generators for random graphs Date: $Date: 2005-06-17 08:06:22 -0600 (Fri, 17 Jun
2005) $

Author: Aric Hagberg (hagberg@lanl.gov) Pieter Swart (swart@lanl.gov) Dan Schult(dschult@colgate.edu

26.1 Functions

fast gnp random graph(n, p, seed=None)

Return a random graph G {n,p}.

The G {n,p} graph choses each of the possible [n(n-1)]/2 edges with
probability p.

Sometimes called Erdős-Rényi graph, or binomial graph.

This algorithm is O(n+m) where m is the expected number of edges
m=p*n*(n-1)/2.

It should be faster than gnp random graph when p is small, and the expected
number of edges is small, (sparse graph).

See:

Batagelj and Brandes, “Efficient generation of large random networks”, Phys.
Rev. E, 71, 036113, 2005. Parameters

n: the number of nodes

p: probability for edge creation

seed: seed for random number generator (default=None)

87



Functions Module networkx.generators.random graphs

gnp random graph(n, p, seed=None)

Return a random graph G {n,p}.

Choses each of the possible [n(n-1)]/2 edges with probability p. This is the
same as binomial graph and erdos renyi graph.

Sometimes called Erdős-Rényi graph, or binomial graph.

This is an O(nˆ2) algorithm. For sparse graphs (small p) see
fast gnp random graph.

P. Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959). E. N.
Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959). Parameters

n: the number of nodes

p: probability for edge creation

seed: seed for random number generator (default=None)

binomial graph(n, p, seed=None)

Return a random graph G {n,p}.

Choses each of the possible [n(n-1)]/2 edges with probability p. This is the
same as binomial graph and erdos renyi graph.

Sometimes called Erdős-Rényi graph, or binomial graph.

This is an O(nˆ2) algorithm. For sparse graphs (small p) see
fast gnp random graph.

P. Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959). E. N.
Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959). Parameters

n: the number of nodes

p: probability for edge creation

seed: seed for random number generator (default=None)

88



Functions Module networkx.generators.random graphs

erdos renyi graph(n, p, seed=None)

Return a random graph G {n,p}.

Choses each of the possible [n(n-1)]/2 edges with probability p. This is the
same as binomial graph and erdos renyi graph.

Sometimes called Erdős-Rényi graph, or binomial graph.

This is an O(nˆ2) algorithm. For sparse graphs (small p) see
fast gnp random graph.

P. Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959). E. N.
Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959). Parameters

n: the number of nodes

p: probability for edge creation

seed: seed for random number generator (default=None)

dense gnm random graph(n, m, seed=None)

Return the random graph G {n,m}.

Gives a graph picked randomly out of the set of all graphs with n nodes and m
edges. This algorithm should be faster than gnm random graph for dense
graphs.

Algorithm by Keith M. Briggs Mar 31, 2006. Inspired by Knuth’s Algorithm S
(Selection sampling technique), in section 3.4.2 of

The Art of Computer Programming by Donald E. Knuth Volume 2 /
Seminumerical algorithms Third Edition, Addison-Wesley, 1997.
Parameters

n: the number of nodes

m: the number of edges

seed: seed for random number generator (default=None)

89



Functions Module networkx.generators.random graphs

gnm random graph(n, m, seed=None)

Return the random graph G {n,m}.

Gives a graph picked randomly out of the set of all graphs with n nodes and m
edges. Parameters

n: the number of nodes

m: the number of edges

seed: seed for random number generator (default=None)

newman watts strogatz graph(n, k, p, seed=None)

Return a Newman-Watts-Strogatz small world graph.

First create a ring over n nodes. Then each node in the ring is connected with
its k nearest neighbors. Then shortcuts are created by adding new edges as
follows: for each edge u-v in the underlying “n-ring with k nearest neighbors”;
with probability p add a new edge u-w with randomly-chosen existing node w.
In contrast with watts strogatz graph(), no edges are removed. Parameters

n: the number of nodes

k: each node is connected to k nearest neighbors in ring topology

p: the probability of adding a new edge for each edge

seed: seed for random number generator (default=None)

watts strogatz graph(n, k, p, seed=None)

Return a Watts-Strogatz small world graph.

First create a ring over n nodes. Then each node in the ring is connected with
its k nearest neighbors. Then shortcuts are created by rewiring existing edges
as follows: for each edge u-v in the underlying “n-ring with k nearest
neighbors”; with probability p replace u-v with a new edge u-w with
randomly-chosen existing node w. In contrast with
newman watts strogatz graph(), the random rewiring does not increase the
number of edges. Parameters

n: the number of nodes

k: each node is connected to k neighbors in the ring topology

p: the probability of rewiring an edge

seed: seed for random number generator (default=None)

90



Functions Module networkx.generators.random graphs

random regular graph(d, n, seed=None)

Return a random regular graph of n nodes each with degree d, G {n,d}.
Return False if unsuccessful.

n*d must be even

Nodes are numbered 0...n-1. To get a uniform sample from the space of
random graphs you should chose d<nˆ{1/3}.

For algorith see Kim and Vu’s paper.

Reference:

@inproceedings{kim-2003-generating,

author = {Jeong Han Kim and Van H. Vu},

title = {Generating random regular graphs},

booktitle = {Proceedings of the thirty-

fifth ACM symposium on Theory of computing},

year = {2003},

isbn = {1-58113-674-9},

pages = {213--222},

location = {San Diego, CA, USA},

doi = {http://doi.acm.org/10.1145/780542.780576},

publisher = {ACM Press},

}

The algorithm is based on an earlier paper:

@misc{ steger-1999-generating,

author = "A. Steger and N. Wormald",

title = "Generating random regular graphs quickly",

text = "Probability and Computing 8 (1999), 377-396.",

year = "1999",

url = "citeseer.ist.psu.edu/steger99generating.html",

}

91



Functions Module networkx.generators.random graphs

barabasi albert graph(n, m, seed=None)

Return random graph using Barabási-Albert preferential attachment model.

A graph of n nodes is grown by attaching new nodes each with m edges that
are preferentially attached to existing nodes with high degree.

The initialization is a graph with with m nodes and no edges.

Reference:

@article{barabasi-1999-emergence,

title = {Emergence of scaling in random networks},

author = {A. L. Barabási and R. Albert},

journal = {Science},

volume = {286},

number = {5439},

pages = {509 -- 512},

year = {1999},

}

Parameters
n: the number of nodes

m: number of edges to attach from a new node to existing nodes

seed: seed for random number generator (default=None)

92



Functions Module networkx.generators.random graphs

powerlaw cluster graph(n, m, p, seed=None)

Holme and Kim algorithm for growing graphs with powerlaw degree
distribution and approximate average clustering.

Reference:

@Article{growing-holme-2002,

author = {P. Holme and B. J. Kim},

title = {Growing scale-

free networks with tunable clustering},

journal = {Phys. Rev. E},

year = {2002},

volume = {65},

number = {2},

pages = {026107},

}

The average clustering has a hard time getting above a certain cutoff that
depends on m. This cutoff is often quite low. Note that the transitivity
(fraction of triangles to possible triangles) seems to go down with network size.

It is essentially the Barabási-Albert growth model with an extra step that each
random edge is followed by a chance of making an edge to one of its neighbors
too (and thus a triangle).

This algorithm improves on B-A in the sense that it enables a higher average
clustering to be attained if desired.

It seems possible to have a disconnected graph with this algorithm since the
initial m nodes may not be all linked to a new node on the first iteration like
the BA model. Parameters

n: the number of nodes

m: the number of random edges to add for each new node

p: probability of adding a triangle after adding a random edge

seed: seed for random number generator (default=None)

93



Functions Module networkx.generators.random graphs

random lobster(n, p1, p2, seed=None)

Return a random lobster.

A caterpillar is a tree that reduces to a path graph when pruning all
leaf nodes (p2=0). A lobster is a tree that reduces to a caterpillar
when pruning all leaf nodes.

Parameters
n: the expected number of nodes in the backbone

p1: probability of adding an edge to the backbone

p2: probability of adding an edge one level beyond backbone

seed: seed for random number generator (default=None)

random shell graph(constructor, seed=None)

Return a random shell graph for the constructor given.

• constructor: a list of three-tuples [(n1,m1,d1),(n2,m2,d2),..] one
for each shell, starting at the center shell.

• n : the number of nodes in the shell

• m : the number or edges in the shell

• d (the ratio of inter (next) shell edges to intra shell
edges.)

d=0 means no intra shell edges. d=1 for the last shell

• seed: seed for random number generator (default=None)

>>> constructor=[(10,20,0.8),(20,40,0.8)]

>>> G=random_shell_graph(constructor)

94



Variables Module networkx.generators.random graphs

random powerlaw tree(n, gamma=3, seed=None, tries=100)

Return a tree with a powerlaw degree distribution.

A trial powerlaw degree sequence is chosen and then elements are swapped
with new elements from a powerlaw distribution until the sequence makes a
tree (#edges=#nodes-1). Parameters

n: the number of nodes

gamma: exponent of power law is gamma

tries: number of attempts to adjust sequence to make a tree

seed: seed for random number generator (default=None)

random powerlaw tree sequence(n, gamma=3, seed=None, tries=100)

Return a degree sequence for a tree with a powerlaw distribution.

A trial powerlaw degree sequence is chosen and then elements are swapped
with new elements from a powerlaw distribution until the sequence makes a
tree (#edges=#nodes-1). Parameters

n: the number of nodes

gamma: exponent of power law is gamma

tries: number of attempts to adjust sequence to make a tree

seed: seed for random number generator (default=None)

26.2 Variables

Name Description

credits Value: ’’

revision Value: ’$Revision: 1049 $’

package Value: ’networkx.generators’

95



Module networkx.generators.small

27 Module networkx.generators.small

Various small and named graphs, together with some compact generators. Date: $Date:
2005-06-15 12:53:08 -0600 (Wed, 15 Jun 2005) $

Author: Aric Hagberg (hagberg@lanl.gov) Pieter Swart (swart@lanl.gov)

27.1 Functions

make small graph(graph description, create using=None)

Return the small graph described by graph description.

graph description is a list of the form [ltype,name,n,xlist]

Here ltype is one of “adjacencylist” or “edgelist”, name is the name of the
graph and n the number of nodes. This constructs a graph of n nodes with
integer labels 1,..,n.

If ltype=“adjacencylist” then xlist is an adjacency list with exactly n entries, in
with the j’th entry (which can be empty) specifies the nodes connected to
vertex j. e.g. the “square” graph C 4 can be obtained by

>>> G=make_small_graph(["adjacencylist","C_4",4,[[2,4],[1,3],[2,4],[1,3]]])

or, since we do not need to add edges twice,

>>> G=make_small_graph(["adjacencylist","C_4",4,[[2,4],[3],[4],[]]])

If ltype=“edgelist” then xlist is an edge list written as
[[v1,w2],[v2,w2],...,[vk,wk]], where vj and wj integers in the range 1,..,n e.g. the
“square” graph C 4 can be obtained by

>>> G=make_small_graph(["edgelist","C_4",4,[[1,2],[3,4],[2,3],[4,1]]])

Use the create using argument to choose the graph class/type.

96



Functions Module networkx.generators.small

LCF graph(n, shift list, repeats)

Return the cubic graph specified in LCF notation.

LCF notation (LCF=Lederberg-Coxeter-Fruchte) is a compressed notation
used in the generation of various cubic Hamiltonian graphs of high symmetry.
See, for example, dodecahedral graph, desargues graph, heawood graph and
pappus graph below.

n (number of nodes) The starting graph is the n-cycle with nodes 0,...,n-1.
(The null graph is returned if n < 0.)

shift list = [s1,s2,..,sk], a list of integer shifts mod n,

repeats integer specifying the number of times that shifts in shift list are
successively applied to each v current in the n-cycle to generate an edge
between v current and v current+shift mod n.

For v1 cycling through the n-cycle a total of k*repeats with shift cycling
through shiftlist repeats times connect v1 with v1+shift mod n

The utility graph K {3,3}

>>> G=LCF_graph(6,[3,-3],3)

The Heawood graph

>>> G=LCF_graph(14,[5,-5],7)

See http://mathworld.wolfram.com/LCFNotation.html for a description and
references.

bull graph()

Return the Bull graph.

chvatal graph()

Return the Chvatal graph.

97

http://mathworld.wolfram.com/LCFNotation.html


Functions Module networkx.generators.small

cubical graph()

Return the 3-regular Platonic Cubical graph.

desargues graph()

Return the Desargues graph.

diamond graph()

Return the Diamond graph.

dodecahedral graph()

Return the Platonic Dodecahedral graph.

frucht graph()

Return the Frucht Graph.

The Frucht Graph is the smallest cubical graph whose automorphism group
consists only of the identity element.

heawood graph()

Return the Heawood graph, a (3,6) cage.

house graph()

Return the House graph (square with triangle on top).

house x graph()

Return the House graph with a cross inside the house square.

98



Functions Module networkx.generators.small

icosahedral graph()

Return the Platonic Icosahedral graph.

krackhardt kite graph()

Return the Krackhardt Kite Social Network.

A 10 actor social network introduced by David Krackhardt to illustrate:
degree, betweenness, centrality, closeness, etc. The traditional labeling is:
Andre=1, Beverley=2, Carol=3, Diane=4, Ed=5, Fernando=6, Garth=7,
Heather=8, Ike=9, Jane=10.

moebius kantor graph()

Return the Moebius-Kantor graph.

octahedral graph()

Return the Platonic Octahedral graph.

pappus graph()

Return the Pappus graph.

petersen graph()

Return the Petersen graph.

sedgewick maze graph()

Return a small maze with a cycle.

This is the maze used in Sedgewick,3rd Edition, Part 5, Graph Algorithms,
Chapter 18, e.g. Figure 18.2 and following. Nodes are numbered 0,..,7

99



Variables Module networkx.generators.small

tetrahedral graph()

Return the 3-regular Platonic Tetrahedral graph.

truncated cube graph()

Return the skeleton of the truncated cube.

truncated tetrahedron graph()

Return the skeleton of the truncated Platonic tetrahedron.

tutte graph()

Return the Tutte graph.

27.2 Variables

Name Description

credits Value: ’’

revision Value: ’$Revision: 1040 $’

package Value: ’networkx.generators’

100



Module networkx.graph

28 Module networkx.graph

Base class for graphs.

Examples Create an empty graph structure (a “null graph”) with zero nodes and zero
edges.

>>> from networkx import *

>>> G=Graph()

G can be grown in several ways. By adding one node at a time:

>>> G.add_node(1)

by adding a list of nodes:

>>> G.add_nodes_from([2,3])

by using an iterator:

>>> G.add_nodes_from(xrange(100,110))

or by adding any container of nodes

>>> H=path_graph(10)

>>> G.add_nodes_from(H)

H can be another graph, or dict, or set, or even a file. Any hashable object (except
None) can represent a node, e.g. a Graph, a customized node object, etc.

>>> G.add_node(H)

G can also be grown by adding one edge at a time:

>>> G.add_edge( (1,2) )

by adding a list of edges:

>>> G.add_edges_from([(1,2),(1,3)])

or by adding any ebunch of edges (see above definition of an ebunch):

>>> G.add_edges_from(H.edges())

There are no complaints when adding existing nodes or edges:

>>> G=Graph()

>>> G.add_edge([(1,2),(1,3)])

101



Class Graph Module networkx.graph

will add new nodes as required. Author: Aric Hagberg (hagberg@lanl.gov) Pieter Swart
(swart@lanl.gov) Dan Schult(dschult@colgate.edu)

28.1 Variables

Name Description

package Value: ’networkx’

28.2 Class Graph

object

networkx.graph.Graph

Known Subclasses: networkx.digraph.DiGraph, networkx.xgraph.XGraph, networkx.tree.Tree,
networkx.tree.Forest, networkx.tree.RootedTree

Graph is a simple graph without any multiple (parallel) edges or self-loops. Attempting
to add either will not change the graph and will not report an error.

28.2.1 Methods

init (self, data=None, name=’’)

Initialize Graph.

>>> G=Graph(name="empty")

creates empty graph G with G.name=“empty” Overrides: object. init

str (self )

str(x) Overrides: object. str extit(inherited documentation)

iter (self )

Return an iterator over the nodes in G.

This is the iterator for the underlying adjacency dict. (Allows the expression
’for n in G’)

102



Class Graph Module networkx.graph

contains (self, n)

Return True if n is a node in graph.

Allows the expression ’n in G’.

Testing whether an unhashable object, such as a list, is in the dict
datastructure (self.adj) will raise a TypeError. Rather than propagate this to
the calling method, just return False.

len (self )

Return the number of nodes in graph.

getitem (self, n)

Return the neighbors of node n as a list.

This provides graph G the natural property that G[n] returns the neighbors of
G.

prepare nbunch(self, nbunch=None)

Return a sequence (or iterator) of nodes contained in nbunch which are also in
the graph.

The input nbunch can be a single node, a sequence or iterator of nodes or
None (omitted). If None, all nodes in the graph are returned.

Note: This routine exhausts any iterator nbunch.

Note: To test whether nbunch is a single node, one can use “if nbunch in self:”,
even after processing with this routine.

Note: This routine returns an empty list if nbunch is not either a node,
sequence, iterator, or None. You can catch this exception if you want to
change this behavior.

103



Class Graph Module networkx.graph

info(self, n=None)

Print short info for graph G or node n.

add node(self, n)

Add a single node n to the graph.

The node n can be any hashable object except None.

A hashable object is one that can be used as a key in a Python dictionary.
This includes strings, numbers, tuples of strings and numbers, etc. On many
platforms this also includes mutables such as Graphs e.g., though one should
be careful the hash doesn’t change on mutables.

Example:

>>> from networkx import *

>>> G=Graph()

>>> K3=complete_graph(3)

>>> G.add_node(1)

>>> G.add_node(’Hello’)

>>> G.add_node(K3)

>>> G.number_of_nodes()

3

add nodes from(self, nlist)

Add multiple nodes to the graph.

nlist: A container of nodes that will be iterated through once (thus it should
be an iterator or be iterable). Each element of the container should be a valid
node type: any hashable type except None. See add node for details.

Examples:

>>> from networkx import *

>>> G=Graph()

>>> K3=complete_graph(3)

>>> G.add_nodes_from(’Hello’)

>>> G.add_nodes_from(K3)

>>> sorted(G.nodes())

[0, 1, 2, ’H’, ’e’, ’l’, ’o’]

104



Class Graph Module networkx.graph

delete node(self, n)

Delete node n from graph. Attempting to delete a non-existent node will raise
an exception.

delete nodes from(self, nlist)

Remove nodes in nlist from graph.

nlist: an iterable or iterator containing valid node names.

Attempting to delete a non-existent node will raise an exception. This could
mean some nodes got deleted and other valid nodes did not.

nodes iter(self )

Return an iterator over the graph nodes.

nodes(self )

Return a copy of the graph nodes in a list.

number of nodes(self )

Return number of nodes.

has node(self, n)

Return True if graph has node n.

(duplicates self. contains ) “n in G” is a more readable version of
“G.has node(n)”?

order(self )

Return the order of a graph = number of nodes.

105



Class Graph Module networkx.graph

add edge(self, u, v=None)

Add a single edge (u,v) to the graph.

>> G.add edge(u,v) and >>> G.add edge( (u,v) ) are equivalent forms of
adding a single edge between nodes u and v. The nodes u and v will be
automatically added if not already in the graph. They must be a hashable
(except None) Python object.

The following examples all add the edge (1,2) to graph G.

>>> G=Graph()

>>> G.add_edge( 1, 2 ) # explicit two node form

>>> G.add_edge( (1,2) ) # single edge as tuple of two nodes

>>> G.add_edges_from( [(1,2)] ) # add edges from iterable container

add edges from(self, ebunch)

Add all the edges in ebunch to the graph.

ebunch: Container of 2-tuples (u,v). The container must be iterable or an
iterator. It is iterated over once. Adding the same edge twice has no effect and
does not raise an exception.

delete edge(self, u, v=None)

Delete the single edge (u,v).

Can be used in two basic forms: >>> G.delete edge(u,v) and >>

G.delete edge( (u,v) ) are equivalent ways of deleting a single edge between
nodes u and v.

Return without complaining if the nodes or the edge do not exist.

delete edges from(self, ebunch)

Delete the edges in ebunch from the graph.

ebunch: an iterator or iterable of 2-tuples (u,v).

Edges that are not in the graph are ignored.

106



Class Graph Module networkx.graph

has edge(self, u, v=None)

Return True if graph contains the edge u-v, return False otherwise.

has neighbor(self, u, v)

Return True if node u has neighbor v.

This is equivalent to has edge(u,v).

get edge(self, u, v=None)

Return 1 if graph contains the edge u-v. Raise an exception otherwise.

neighbors iter(self, n)

Return an iterator over all neighbors of node n.

neighbors(self, n)

Return a list of nodes connected to node n.

edges iter(self, nbunch=None)

Return iterator that iterates once over each edge adjacent to nodes in nbunch,
or over all edges in graph if no nodes are specified.

If nbunch is None return all edges in the graph. The argument nbunch can be
any single node, or any sequence or iterator of nodes. Nodes in nbunch that
are not in the graph will be (quietly) ignored.

107



Class Graph Module networkx.graph

edges(self, nbunch=None)

Return list of all edges that are adjacent to a node in nbunch, or a list of all
edges in graph if no nodes are specified.

If nbunch is None return all edges in the graph. The argument nbunch can be
any single node, or any sequence or iterator of nodes. Nodes in nbunch that
are not in the graph will be (quietly) ignored.

For digraphs, edges=out edges

edge boundary(self, nbunch1, nbunch2=None)

Return list of edges (n1,n2) with n1 in nbunch1 and n2 in nbunch2. If nbunch2
is omitted or nbunch2=None, then nbunch2 is all nodes not in nbunch1.

Nodes in nbunch1 and nbunch2 that are not in the graph are ignored.

nbunch1 and nbunch2 are usually meant to be disjoint, but in the interest of
speed and generality, that is not required here.

This routine is faster if nbunch1 is smaller than nbunch2.

node boundary(self, nbunch1, nbunch2=None)

Return list of all nodes on external boundary of nbunch1 that are in nbunch2.
If nbunch2 is omitted or nbunch2=None, then nbunch2 is all nodes not in
nbunch1.

Note that by definition the node boundary is external to nbunch1.

Nodes in nbunch1 and nbunch2 that are not in the graph are ignored.

nbunch1 and nbunch2 are usually meant to be disjoint, but in the interest of
speed and generality, that is not required here.

This routine is faster if nbunch1 is smaller than nbunch2.

108



Class Graph Module networkx.graph

degree(self, nbunch=None, with labels=False)

Return degree of single node or of nbunch of nodes. If nbunch is omitted or
nbunch=None, then return degrees of all nodes.

The degree of a node is the number of edges attached to that node.

Can be called in three ways:

G.degree(n): return the degree of node n G.degree(nbunch): return a list of
values, one for each n in nbunch (nbunch is any iterable container of nodes.)
G.degree(): same as nbunch = all nodes in graph.

If with labels==True, then return a dict that maps each n in nbunch to
degree(n).

Any nodes in nbunch that are not in the graph are (quietly) ignored.

degree iter(self, nbunch=None, with labels=False)

Return iterator that return degree(n) or (n,degree(n)) for all n in nbunch. If
nbunch is ommitted, then iterate over all nodes.

Can be called in three ways: G.degree iter(n): return iterator the degree of
node n G.degree iter(nbunch): return a list of values, one for each n in nbunch
(nbunch is any iterable container of nodes.) G.degree iter(): same as nbunch
= all nodes in graph.

If with labels==True, iterator will return an (n,degree(n)) tuple of node and
degree.

Any nodes in nbunch that are not in the graph are (quietly) ignored.

clear(self )

Remove name and delete all nodes and edges from graph.

copy(self )

Return a (shallow) copy of the graph.

Identical to dict.copy() of adjacency dict adj, with name copied as well.

109



Class Graph Module networkx.graph

to undirected(self )

Return the undirected representation of the graph G.

This graph is undirected, so merely return a copy.

to directed(self )

Return a directed representation of the graph G.

A new digraph is returned with the same name, same nodes and with each
edge u-v represented by two directed edges u->v and v->u.

subgraph(self, nbunch, inplace=False, create using=None)

Return the subgraph induced on nodes in nbunch.

nbunch: can be a single node or any iterable container of of nodes. (It can be
an iterable or an iterator, e.g. a list, set, graph, file, numeric array, etc.)

Setting inplace=True will return the induced subgraph in the original graph
by deleting nodes not in nbunch. This overrides create using. Warning: this
can destroy the graph.

Unless otherwise specified, return a new graph of the same type as self. Use
(optional) create using=R to return the resulting subgraph in R. R can be an
existing graph-like object (to be emptied) or R can be a call to a graph object,
e.g. create using=DiGraph(). See documentation for empty graph()

Note: use subgraph(G) rather than G.subgraph() to access the more general
subgraph() function from the operators module.

add path(self, nlist)

Add the path through the nodes in nlist to graph

add cycle(self, nlist)

Add the cycle of nodes in nlist to graph

110



Class Graph Module networkx.graph

is directed(self )

Return True if graph is directed.

size(self )

Return the size of a graph = number of edges.

number of edges(self, u=None, v=None)

Return the number of edges between nodes u and v.

If u and v are not specified return the number of edges in the entire graph.

The edge argument e=(u,v) can be specified as G.number of edges(u,v) or
G.number of edges(e)

Inherited from object

delattr (), format (), getattribute (), hash (), new (), reduce (),
reduce ex (), repr (), setattr (), sizeof (), subclasshook ()

28.2.2 Properties

Name Description

Inherited from object

class

111



Variables Module networkx.hybrid

29 Module networkx.hybrid

Hybrid Date: $Date: 2005-03-30 16:56:28 -0700 (Wed, 30 Mar 2005) $

Author: Aric Hagberg (hagberg@lanl.gov) Dan Schult (dschult@colgate.edu)

29.1 Functions

kl connected subgraph(G, k, l, low memory=False,
same as graph=False)

Returns the maximum locally (k,l) connected subgraph of G.

(k,l)-connected subgraphs are presented by Fan Chung and Li in “The Small
World Phenomenon in hybrid power law graphs” to appear in “Complex
Networks” (Ed. E. Ben-Naim) Lecture Notes in Physics, Springer (2004)

low memory=True then use a slightly slower, but lower memory version
same as graph=True then return a tuple with subgraph and pflag for if G is
kl-connected

is kl connected(G, k, l, low memory=False)

Returns True if G is kl connected

29.2 Variables

Name Description

credits Value: ’’

revision Value: ’$Revision: 911 $’

package Value: ’networkx’

warningregistry Value: {(’the sets module is

deprecated’, <type ’exceptions.Depr...

112



Module networkx.info

30 Module networkx.info

Graph classes Graph

A simple graph that has no self-loops or multiple (parallel) edges.

An empty graph is created with

>>> G=Graph()

DiGraph

A directed graph that has no self-loops or multiple (parallel) edges. Subclass
of Graph.

An empty digraph is created with

>>> G=DiGraph()

XGraph

A graph that has (optional) self-loops or multiple (parallel) edges and arbitrary
data on the edges. Subclass of Graph.

An empty graph is created with

>>> G=XGraph()

XDiGraph

A directed graph that has (optional) self-loops or multiple (parallel) edges and
arbitrary data on the edges.

A simple digraph that has no self-loops or multiple (parallel) edges. Subclass
of DiGraph which is a subclass of Graph.

An empty digraph is created with

>>> G=DiGraph()

The XGraph and XDiGraph classes extend the Graph and DiGraph classes by allowing
(optional) self loops, multiedges and by decorating each edge with an object x.

Each XDiGraph or XGraph edge is a 3-tuple e=(n1,n2,x), representing an edge between
nodes n1 and n2 that is decorated with the object x. Here n1 and n2 are (hashable)
node objects and x is a (not necessarily hashable) edge object. If multiedges are allowed,
G.get edge(n1,n2) returns a list of edge objects.

113



Module networkx.info

Whether an XGraph or XDiGraph allow self-loops or multiple edges is determined ini-
tially via parameters selfloops=True/False and multiedges=True/False. For example,
the example empty XGraph created above is equivalent to

>>> G=XGraph(selfloops=False, multiedges=False)

Similar defaults hold for XDiGraph. The command

>>> G=XDiGraph(multiedges=True)

creates an empty digraph G that does not allow selfloops but does allow for multiple
(parallel) edges. Methods exist for allowing or disallowing each feature after instatiation
as well.

Note that if G is an XGraph then G.add edge(n1,n2) will add the edge (n1,n2,None),
and G.delete edge(n1,n2) will attempt to delete the edge (n1,n2,None). In the case of
multiple edges between nodes n1 and n2, one can use G.delete multiedge(n1,n2) to delete
all edges between n1 and n2.

Notation The following shorthand is used throughout NetworkX documentation and
code: (we use mathematical notation n,v,w,... to indicate a node, v=vertex=node).

G,G1,G2,H,etc: Graphs

n,n1,n2,u,v,v1,v2: nodes (vertices)

nlist: a list of nodes (vertices)

nbunch: a“bunch”of nodes (vertices). An nbunch is either a single node of the graph or
any iterable container/iterator of nodes. The distinction is determined by checking
if nbunch is in the graph. If you use iterable containers as nodes you should be
careful when using nbunch.

e=(n1,n2): an edge (a python“2-tuple”), also written n1-n2 (if undirected) and n1->n2
(if directed).

e=(n1,n2,x): an edge triple (“3-tuple”) containing the two nodes connected and the
edge data/label/object stored associated with the edge. The object x, or a list of
objects (if multiedges=True), can be obtained using G.get edge(n1,n2)

elist: a list of edges (as 2- or 3-tuples)

ebunch: a bunch of edges (as 2- or 3-tuples). An ebunch is any iterable (non-string)
container of edge-tuples (either 2-tuples, 3-tuples or a mixture).

Warning:

• The ordering of objects within an arbitrary nbunch/ebunch can be machine-

114



Module networkx.info

dependent.

• Algorithms should treat an arbitrary nbunch/ebunch as once-through-and-
exhausted iterable containers.

• len(nbunch) and len(ebunch) need not be defined.

Methods Each class provides basic graph methods.

Mutating Graph methods

• G.add node(n), G.add nodes from(nlist)

• G.delete node(n), G.delete nodes from(nlist)

• G.add edge(n1,n2), G.add edge(e), where e=(u,v)

• G.add edges from(ebunch)

• G.delete edge(n1,n2), G.delete edge(e), where e=(u,v)

• G.delete edges from(ebunch)

• G.add path(nlist)

• G.add cycle(nlist)

• G.clear()

• G.subgraph(nbunch,inplace=True)

Non-mutating Graph methods

• len(G)

• G.has node(n)

• n in G (equivalent to G.has node(n))

• for n in G: (iterate through the nodes of G)

• G.nodes()

• G.nodes iter()

115



Module networkx.info

• G.has edge(n1,n2), G.has neighbor(n1,n2), G.get edge(n1,n2)

• G.edges(), G.edges(n), G.edges(nbunch)

• G.edges iter(), G.edges iter(n), G.edges iter(nbunch)

• G.neighbors(n)

• G[n] (equivalent to G.neighbors(n))

• G.neighbors iter(n) # iterator over neighbors

• G.number of nodes(), G.order()

• G.number of edges(), G.size()

• G.edge boundary(nbunch1), G.node boundary(nbunch1)

• G.degree(n), G.degree(nbunch)

• G.degree iter(n), G.degree iter(nbunch)

• G.is directed()

• G.info() # print variaous info about a graph

• G.prepare nbunch(nbunch) # return list of nodes in G and nbunch

Methods returning a new graph

• G.subgraph(nbunch)

• G.subgraph(nbunch,create using=H)

• G.copy()

• G.to undirected()

• G.to directed()

Implementation Notes The graph classes implement graphs using data structures based
on an adjacency list implemented as a node-centric dictionary of dictionaries. The
dictionary contains keys corresponding to the nodes and the values are dictionaries of
neighboring node keys with the value None (the Python None type) for Graph and
DiGraph or user specified (default is None) for XGraph and XDiGraph. The dictionary
of dictionary structure allows fast addition, deletion and lookup of nodes and neighbors
in large graphs.

116



Variables Module networkx.info

Similarities between XGraph and Graph XGraph and Graph differ in the way edge data
is handled. XGraph edges are 3-tuples (n1,n2,x) and Graph edges are 2-tuples (n1,n2).
XGraph inherits from the Graph class, and XDiGraph from the DiGraph class.

Graph and XGraph are similar in the following ways:

1. Edgeless graphs are the same in XGraph and Graph. For an edgeless graph,
represented by G (member of the Graph class) and XG (member of XGraph
class), there is no difference between the datastructures G.adj and XG.adj,
other than possibly in the ordering of the keys in the adj dict.

2. Basic graph construction code for G=Graph() will also work for G=XGraph().
In the Graph class, the simplest graph construction consists of a graph cre-
ation command G=Graph() followed by a list of graph construction commands,
consisting of successive calls to the methods:

G.add node, G.add nodes from, G.add edge, G.add edges, G.add path, G.add cycle
G.delete node, G.delete nodes from, G.delete edge, G.delete edges from

with all edges specified as 2-tuples,

If one replaces the graph creation command with G=XGraph(), and then apply
the identical list of construction commands, the resulting XGraph object will
be a simple graph G with identical datastructure G.adj. This property ensures
reuse of code developed for graph generation in the Graph class.

30.1 Variables

Name Description

package Value: None

117



Module networkx.isomorph

31 Module networkx.isomorph

Fast checking to see if graphs are not isomorphic.

This isn’t a graph isomorphism checker. Date: $Date: 2005-05-31 17:00:13 -0600 (Tue,
31 May 2005) $

Author: Pieter Swart (swart@lanl.gov) Dan Schult (dschult@colgate.edu)

31.1 Functions

graph could be isomorphic(G1, G2 )

Returns False if graphs G1 and G2 are definitely not isomorphic. True does
NOT garantee isomorphism.

Checks for matching degree, triangle, and number of cliques sequences.

fast graph could be isomorphic(G1, G2 )

Returns False if graphs G1 and G2 are definitely not isomorphic. True does
NOT garantee isomorphism.

Checks for matching degree and triangle sequences.

faster graph could be isomorphic(G1, G2 )

Returns False if graphs G1 and G2 are definitely not isomorphic. True does
NOT garantee isomorphism.

Checks for matching degree sequences in G1 and G2.

is isomorphic(G1, G2 )

Returns True if the graphs G1 and G2 are isomorphic and False otherwise.

Uses the vf2 algorithm - see networkx.isomorphvf2

31.2 Variables

118



Variables Module networkx.isomorph

Name Description

credits Value: ’’

revision Value: ’$Revision: 1002 $’

package Value: ’networkx’

119



Class GraphMatcher Module networkx.isomorphvf2

32 Module networkx.isomorphvf2

An implementation of VF2 algorithm for graph ismorphism testing, as seen here:

Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento, “A
(Sub)Graph Isomorphism Algorithm for Matching Large Graphs,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no.
10, pp. 1367-1372, Oct., 2004.

Modified to handle undirected graphs. Modified to handle multiple edges. Date: $Date:
2007-08-21 16:49:09 -0600 (Tue, 21 Aug 2007) $

32.1 Variables

Name Description

credits Value: ’$Credits:$’

revision Value: ’$Revision: 680 $’

package Value: ’networkx’

32.2 Class GraphMatcher

object

networkx.isomorphvf2.GraphMatcher

A GraphMatcher is responsible for matching undirected graphs (Graph or XGraph) in
a predetermined manner. For graphs G1 and G2, this typically means a check for an
isomorphism between them, though other checks are also possible. For example, the
GraphMatcher class can check if a subgraph of G1 is isomorphic to G2.

Matching is done via syntactic feasibility. It is also possible to check for semantic feasi-
bility. Feasibility, then, is defined as the logical AND of the two functions.

To include a semantic check, the GraphMatcher class should be subclassed, and the
semantic feasibility() function should be redefined. By default, the semantic feasibility
function always returns True. The effect of this is that semantics are not considered in
the matching of G1 and G2.

For more information, see the docmentation for: syntactic feasibliity() semantic feasibility()

Suppose G1 and G2 are isomorphic graphs. Verification is as follows:

>>> GM = GraphMatcher(G1,G2)

>>> GM.is_isomorphic()

120



Class GraphMatcher Module networkx.isomorphvf2

True

>>> GM.mapping

GM.mapping stores the isomorphism mapping.

32.2.1 Methods

init (self, G1, G2 )

Initialize GraphMatcher.

Suppose G1 and G2 are undirected graphs.

>>> GM = GraphMatcher(G1,G2)

creates a GraphMatcher which only checks for syntactic feasibility. Overrides:
object. init

del (self )

candidate pairs iter(self )

This function returns an iterator over pairs to be considered for inclusion in
the current partial isomorphism mapping.

is isomorphic(self )

Returns True if G1 and G2 are isomorphic graphs. Otherwise, it returns False.

match(self, state)

This function is called recursively to determine if a complete isomorphism can
be found between G1 and G2. It cleans up the class variables after each
recursive call. If an isomorphism is found, we raise a StopIteration and jump
immediately out of the recursion.

121



Class GraphMatcher Module networkx.isomorphvf2

semantic feasibility(self, G1 node, G2 node)

The semantic feasibility function should return True if it is acceptable to add
the candidate pair (G1 node, G2 node) to the current partial isomorphism
mapping. The logic should focus on semantic information contained in the
edge data or a formalized node class.

By acceptable, we mean that the subsequent mapping can still become a
complete isomorphism mapping. Thus, if adding the candidate pair definitely
makes it so that the subsequent mapping cannot become a complete
isomorphism mapping, then this function must return False.

The default semantic feasibility function always returns True. The effect is
that semantics are not considered in the matching of G1 and G2.

The semantic checks might differ based on the what type of test is being
performed. A keyword description of the test is stored in self.test. Here is a
quick description of the currently implemented tests:

test=’graph’ Indicates that the graph matcher is looking for a
graph-graph isomorphism.

test=’subgraph’ Indicates that the graph matcher is looking for a
subgraph-graph isomorphism such that a subgraph of G1 is
isomorphic to G2.

Any subclass of GraphMatcher which redefines semantic feasibility() must
maintain the above form to keep the match() method functional.
Implementation considerations should include directed and undirected graphs,
as well as graphs with multiple edges.

As an example, if edges have weights, one feasibility function would be to
demand that the weight values/relationships are preserved in the isomorphism
mapping.

subgraph is isomorphic(self )

Returns True if a subgraph of G1 is isomorphic to G2. Otherwise, it returns
False.

122



Class DiGraphMatcher Module networkx.isomorphvf2

syntactic feasibility(self, G1 node, G2 node)

This function returns True if it is adding the candidate pair to the current
partial isomorphism mapping is allowable. The addition is allowable if the
inclusion of the candidate pair does not make it impossible for an isomorphism
to be found.

Inherited from object

delattr (), format (), getattribute (), hash (), new (), reduce (),
reduce ex (), repr (), setattr (), sizeof (), str (), subclasshook ()

32.2.2 Properties

Name Description

Inherited from object

class

32.3 Class DiGraphMatcher

object

networkx.isomorphvf2.DiGraphMatcher

A DiGraphMatcher is responsible for matching directed graphs (DiGraph or XDiGraph)
in a predetermined manner. For graphs G1 and G2, this typically means a check for
an isomorphism between them, though other checks are also possible. For example, the
DiGraphMatcher class can check if a subgraph of G1 is isomorphic to G2.

Matching is done via syntactic feasibility. It is also possible to check for semantic feasi-
bility. Feasibility, then, is defined as the logical AND of the two functions.

To include a semantic check, you should subclass the GraphMatcher class and redefine
semantic feasibility(). By default, the semantic feasibility function always returns True.
The effect of this is that semantics are not considered in the matching of G1 and G2.

For more information, see the docmentation for: syntactic feasibliity() semantic feasibility()

Suppose G1 and G2 are isomorphic graphs. Verfication is as follows:

>>> GM = GraphMatcher(G1,G2)

>>> GM.is_isomorphic()

True

>>> GM.mapping

123



Class DiGraphMatcher Module networkx.isomorphvf2

GM.mapping stores the isomorphism mapping.

32.3.1 Methods

init (self, G1, G2 )

Initialize DiGraphMatcher.

Suppose G1 and G2 are graphs.

>>> GM = DiGraphMatcher(G1,G2)

creates a DiGraphMatcher which only checks for syntactic feasibility.
Overrides: object. init

del (self )

candidate pairs iter(self )

This function returns an iterator over pairs to be considered for inclusion in
the current partial isomorphism mapping.

is isomorphic(self )

Returns True if G1 and G2 are isomorphic graphs. Otherwise, it returns False.

match(self, state)

This function is called recursively to determine if a complete isomorphism can
be found between G1 and G2. It cleans up the class variables after each
recursive call. Because of this, this function will not return True or False. If a
mapping is found, we will jump out of the recursion by throwing an exception.
Otherwise, we will return nothing.

124



Class DiGraphMatcher Module networkx.isomorphvf2

semantic feasibility(self, G1 node, G2 node)

The semantic feasibility function should return True if it is acceptable to add
the candidate pair (G1 node, G2 node) to the current partial isomorphism
mapping. The logic should focus on semantic information contained in the
edge data or a formalized node class.

By acceptable, we mean that the subsequent mapping can still become a
complete isomorphism mapping. Thus, if adding the candidate pair definitely
makes it so that the subsequent mapping cannot become a complete
isomorphism mapping, then this function must return False.

The default semantic feasibility function always returns True. The effect is
that semantics are not considered in the matching of G1 and G2.

The semantic checks might differ based on the what type of test is being
performed. A keyword description of the test is stored in self.test. Here is a
quick description of the currently implemented tests:

test=’graph’ Indicates that the graph matcher is looking for a
graph-graph isomorphism.

test=’subgraph’ Indicates that the graph matcher is looking for a
subgraph-graph isomorphism such that a subgraph of G1 is
isomorphic to G2.

Any subclass of DiGraphMatcher which redefines semantic feasibility() must
maintain the above form to keep the match() method functional.
Implementation considerations should include directed and undirected graphs,
as well as graphs with multiple edges.

As an example, if edges have weights, one feasibility function would be to
demand that the weight values/relationships are preserved in the isomorphism
mapping.

subgraph is isomorphic(self )

Returns True if a subgraph of G1 is isomorphic to G2. Otherwise, it returns
False.

125



Class GMState Module networkx.isomorphvf2

syntactic feasibility(self, G1 node, G2 node)

This function returns True if it is adding the candidate pair to the current
partial isomorphism mapping is allowable.

Keywords:

test=’graph’ Checks for graph-graph isomorphism. This is the default
value.

test=’subgraph’ Checks for graph-subgraph isomorphism in such a way
that a subgraph of G1 might be isomorphic to G2.

Inherited from object

delattr (), format (), getattribute (), hash (), new (), reduce (),
reduce ex (), repr (), setattr (), sizeof (), str (), subclasshook ()

32.3.2 Properties

Name Description

Inherited from object

class

32.4 Class GMState

object

networkx.isomorphvf2.GMState

This class is used internally by the GraphMatcher class. It is used only to store state
specific data. There will be at most G2.order() of these objects in memory at a time,
due to the depth-first search strategy employed by the VF2 algorithm.

126



Class DiGMState Module networkx.isomorphvf2

32.4.1 Methods

init (self, GM, G1 node=None, G2 node=None)

Initializes GMState object.

Pass in the GraphMatcher to which this DiGMState belongs and the new node
pair that will be added to the GraphMatcher’s current isomorphism mapping.
Overrides: object. init

del (self )

Deletes the GMState object and restores the class variables.

Inherited from object

delattr (), format (), getattribute (), hash (), new (), reduce (),
reduce ex (), repr (), setattr (), sizeof (), str (), subclasshook ()

32.4.2 Properties

Name Description

Inherited from object

class

32.4.3 Class Variables

Name Description

core 1 Value: {}

core 2 Value: {}

inout 1 Value: {}

inout 2 Value: {}

32.5 Class DiGMState

object

networkx.isomorphvf2.DiGMState

127



Class DiGMState Module networkx.isomorphvf2

This class is used internally by the DiGraphMatcher class. It is used only to store state
specific data. There will be at most G2.order() of these objects in memory at a time,
due to the depth-first search strategy employed by the VF2 algorithm.

32.5.1 Methods

init (self, DiGM, G1 node=None, G2 node=None)

Initializes DiGMState object.

Pass in the DiGraphMatcher to which this DiGMState belongs and the new
node pair that will be added to the GraphMatcher’s current isomorphism
mapping. Overrides: object. init

del (self )

Deletes the DiGMState object and restores the class variables.

Inherited from object

delattr (), format (), getattribute (), hash (), new (), reduce (),
reduce ex (), repr (), setattr (), sizeof (), str (), subclasshook ()

32.5.2 Properties

Name Description

Inherited from object

class

32.5.3 Class Variables

Name Description

core 1 Value: {}

core 2 Value: {}

in 1 Value: {}

in 2 Value: {}

out 1 Value: {}

out 2 Value: {}

128



Module networkx.operators

33 Module networkx.operators

Operations on graphs; including union, complement, subgraph. Date: $Date: 2007-07-
18 15:23:23 -0600 (Wed, 18 Jul 2007) $

Author: Aric Hagberg (hagberg@lanl.gov) Pieter Swart (swart@lanl.gov) Dan Schult(dschult@colgate.edu

33.1 Functions

subgraph(G, nbunch, inplace=False, create using=None)

Return the subgraph induced on nodes in nbunch.

nbunch: can be a singleton node, a string (which is treated as a singleton
node), or any iterable container of of nodes. (It can be an iterable or an
iterator, e.g. a list, set, graph, file, numeric array, etc.)

Setting inplace=True will return the induced subgraph in the original graph
by deleting nodes not in nbunch. This overrides create using. Warning: this
can destroy the graph.

Unless otherwise specified, return a new graph of the same type as self. Use
(optional) create using=R to return the resulting subgraph in R. R can be an
existing graph-like object (to be emptied) or R is a call to a graph object, e.g.
create using=DiGraph(). See documentation for empty graph.

Implemented for Graph, DiGraph, XGraph, XDiGraph

Note: subgraph(G) calls G.subgraph()

129



Functions Module networkx.operators

union(G, H, create using=None, rename=False, name=None)

Return the union of graphs G and H.

Graphs G and H must be disjoint, otherwise an exception is raised.

Node names of G and H can be changed be specifying the tuple
rename=(’G-’,’H-’) (for example). Node u in G is then renamed “G-u” and v in
H is renamed “H-v”.

To force a disjoint union with node relabeling, use disjoint union(G,H) or
convert node labels to integers().

Optional create using=R returns graph R filled in with the union of G and H.
Otherwise a new graph is created, of the same class as G. It is recommended
that G and H be either both directed or both undirected.

A new name can be specified in the form
X=graph union(G,H,name=“new name”)

Implemented for Graph, DiGraph, XGraph, XDiGraph.

disjoint union(G, H )

Return the disjoint union of graphs G and H, forcing distinct integer node
labels.

A new graph is created, of the same class as G. It is recommended that G and
H be either both directed or both undirected.

Implemented for Graph, DiGraph, XGraph, XDiGraph.

cartesian product(G, H )

Return the Cartesian product of G and H.

Tested only on Graph class.

130



Functions Module networkx.operators

compose(G, H, create using=None, name=None)

Return a new graph of G composed with H.

The node sets of G and H need not be disjoint.

A new graph is returned, of the same class as G. It is recommended that G
and H be either both directed or both undirected.

Optional create using=R returns graph R filled in with the compose(G,H).
Otherwise a new graph is created, of the same class as G. It is recommended
that G and H be either both directed or both undirected.

Implemented for Graph, DiGraph, XGraph, XDiGraph

complement(G, create using=None, name=None)

Return graph complement of G.

Unless otherwise specified, return a new graph of the same type as self. Use
(optional) create using=R to return the resulting subgraph in R. R can be an
existing graph-like object (to be emptied) or R can be a call to a graph object,
e.g. create using=DiGraph(). See documentation for empty graph()

Implemented for Graph, DiGraph, XGraph, XDiGraph. Note that
complement() is not well-defined for XGraph and XDiGraph objects that allow
multiple edges or self-loops.

create empty copy(G, with nodes=True)

Return a copy of the graph G with all of the edges removed.

convert to undirected(G)

Return a new undirected representation of the graph G.

Works for Graph, DiGraph, XGraph, XDiGraph.

Note: convert to undirected(G)=G.to undirected()

131



Functions Module networkx.operators

convert to directed(G)

Return a new directed representation of the graph G.

Works for Graph, DiGraph, XGraph, XDiGraph.

Note: convert to directed(G)=G.to directed()

relabel nodes(G, mapping)

Return a copy of G with node labels transformed by mapping.

mapping is either

• a dictionary with the old labels as keys and new labels as values

• a function transforming an old label with a new label

In either case, the new labels must be hashable Python objects.

mapping as dictionary:

>>> G=path_graph(3) # nodes 0-1-2

>>> mapping={0:’a’,1:’b’,2:’c’}

>>> H=relabel_nodes(G,mapping)

>>> print H.nodes()

[’a’, ’c’, ’b’]

>>> G=path_graph(26) # nodes 0..25

>>> mapping=dict(zip(G.nodes(),"abcdefghijklmnopqrstuvwxyz"))

>>> H=relabel_nodes(G,mapping) # nodes a..z

>>> mapping=dict(zip(G.nodes(),xrange(1,27)))

>>> G1=relabel_nodes(G,mapping) # nodes 1..26

mapping as function

>>> G=path_graph(3)

>>> def mapping(x):

... return x**2

>>> H=relabel_nodes(G,mapping)

>>> print H.nodes()

[0, 1, 4]

Also see convert node labels to integers.

132



Variables Module networkx.operators

relabel nodes with function(G, func)

Deprecated: call relabel nodes(G,func).

convert node labels to integers(G, first label=0, ordering=’default’,
discard old labels=True)

Return a copy of G, with n node labels replaced with integers, starting at
first label.

first label: (optional, default=0)

An integer specifying the offset in numbering nodes. The n new
integer labels are numbered first label, ..., n+first label.

ordering: (optional, default=“default”)

A string specifying how new node labels are ordered. Possible values
are:

“default” : inherit node ordering from G.nodes() “sorted” :
inherit node ordering from sorted(G.nodes()) “increasing
degree” : nodes are sorted by increasing degree “decreasing
degree” : nodes are sorted by decreasing degree

discard old labels if True (default) discard old labels if False, create a dict
self.node labels that maps new labels to old labels

Works for Graph, DiGraph, XGraph, XDiGraph

33.2 Variables

Name Description

credits Value: ’’

revision Value: ’$Revision: 1024 $’

package Value: ’networkx’

133



Module networkx.path

34 Module networkx.path

Shortest path algorithms. Author: Aric Hagberg (hagberg@lanl.gov)

34.1 Functions

shortest path length(G, source, target)

Return the shortest path length in the graph G between the source and target.
Raise an exception if no path exists.

G is treated as an unweighted graph. For weighted graphs see
dijkstra path length.

single source shortest path length(G, source, cutoff =None)

Shortest path length from source to all reachable nodes.

Returns a dictionary of shortest path lengths keyed by target.

>>> G=path_graph(5)

>>> length=single_source_shortest_path_length(G,1)

>>> length[4]

3

>>> print length

{0: 1, 1: 0, 2: 1, 3: 2, 4: 3}

cutoff is optional integer depth to stop the search - only paths of length <=
cutoff are returned.

all pairs shortest path length(G, cutoff =None)

Return dictionary of shortest path lengths between all nodes in G.

The dictionary only has keys for reachable node pairs. >>> G=path graph(5)
>>> length=all pairs shortest path length(G) >>> print length[1][4] 3 >>>

length[1] {0: 1, 1: 0, 2: 1, 3: 2, 4: 3}

cutoff is optional integer depth to stop the search - only paths of length <=
cutoff are returned.

134



Functions Module networkx.path

shortest path(G, source, target)

Return a list of nodes in G for a shortest path between source and target.

There may be more than one shortest path. This returns only one.

bidirectional shortest path(G, source, target)

Return list of nodes in a shortest path between source and target. Return
False if no path exists.

Also known as shortest path.

single source shortest path(G, source, cutoff =None)

Return list of nodes in a shortest path between source and all other nodes in G
reachable from source.

There may be more than one shortest path between the source and target
nodes - this routine returns only one.

cutoff is optional integer depth to stop the search - only paths of length <=
cutoff are returned.

See also shortest path and bidirectional shortest path.

all pairs shortest path(G, cutoff =None)

Return dictionary of shortest paths between all nodes in G.

The dictionary only has keys for reachable node pairs.

cutoff is optional integer depth to stop the search - only paths of length <=
cutoff are returned.

See also floyd warshall.

135



Functions Module networkx.path

dijkstra path(G, source, target)

Returns the shortest path from source to target in a weighted graph G. Uses a
bidirectional version of Dijkstra’s algorithm.

Edge data must be numerical values for XGraph and XDiGraphs. The weights
are assigned to be 1 for Graphs and DiGraphs.

See also bidirectional dijkstra for more information about the algorithm.

dijkstra path length(G, source, target)

Returns the shortest path length from source to target in a weighted graph G.
Uses a bidirectional version of Dijkstra’s algorithm.

Edge data must be numerical values for XGraph and XDiGraphs. The weights
are assigned to be 1 for Graphs and DiGraphs.

See also bidirectional dijkstra for more information about the algorithm.

bidirectional dijkstra(G, source, target)

Dijkstra’s algorithm for shortest paths using bidirectional search.

Returns a two-tuple (d,p) where d is the distance and p is the path from the
source to the target.

Distances are calculated as sums of weighted edges traversed.

Edges must hold numerical values for XGraph and XDiGraphs. The weights
are set to 1 for Graphs and DiGraphs.

In practice bidirectional Dijkstra is much more than twice as fast as ordinary
Dijkstra.

Ordinary Dijkstra expands nodes in a sphere-like manner from the source. The
radius of this sphere will eventually be the length of the shortest path.
Bidirectional Dijkstra will expand nodes from both the source and the target,
making two spheres of half this radius. Volume of the first sphere is pi*r*r
while the others are 2*pi*r/2*r/2, making up half the volume.

This algorithm is not guaranteed to work if edge weights are negative or are
floating point numbers (overflows and roundoff errors can cause problems).

136



Functions Module networkx.path

single source dijkstra path(G, source)

Returns the shortest paths from source to all other reachable nodes in a
weighted graph G. Uses Dijkstra’s algorithm.

Returns a dictionary of shortest path lengths keyed by source.

Edge data must be numerical values for XGraph and XDiGraphs. The weights
are assigned to be 1 for Graphs and DiGraphs.

See also single source dijkstra for more information about the algorithm.

single source dijkstra path length(G, source)

Returns the shortest path lengths from source to all other reachable nodes in a
weighted graph G. Uses Dijkstra’s algorithm.

Returns a dictionary of shortest path lengths keyed by source.

Edge data must be numerical values for XGraph and XDiGraphs. The weights
are assigned to be 1 for Graphs and DiGraphs.

See also single source dijkstra for more information about the algorithm.

137



Functions Module networkx.path

single source dijkstra(G, source, target=None)

Dijkstra’s algorithm for shortest paths in a weighted graph G.

Use:

single source dijkstra path() - shortest path list of nodes

single source dijkstra path length() - shortest path length

Returns a tuple of two dictionaries keyed by node. The first stores distance
from the source. The second stores the path from the source to that node.

Distances are calculated as sums of weighted edges traversed. Edges must hold
numerical values for XGraph and XDiGraphs. The weights are 1 for Graphs
and DiGraphs.

Optional target argument stops the search when target is found.

Based on the Python cookbook recipe (119466) at
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/119466

This algorithm is not guaranteed to work if edge weights are negative or are
floating point numbers (overflows and roundoff errors can cause problems).

See also ’bidirectional dijkstra path’

dijkstra predecessor and distance(G, source)

Same algorithm as for single source dijsktra, but returns two dicts
representing a list of predecessors of a node and the distance to each node
respectively. The list of predecessors contains more than one element only
when there are more than one shortest paths to the key node.

This routine is intended for use with the betweenness centrality algorithms in
centrality.py.

138

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/119466


Functions Module networkx.path

floyd warshall array(graph)

The Floyd-Warshall algorithm for all pairs shortest paths.

Returns a tuple (distance,path) containing two arrays of shortest distance and
paths as a predecessor matrix.

This differs from floyd warshall only in the types of the return values. Thus,
path[i,j] gives the predecessor at j on a path from i to j. A value of None
indicates that no path exists. A predecessor of i indicates the beginning of the
path. The advantage of this implementation is that, while running time is
O(nˆ3), running space is O(nˆ2).

This algorithm handles negative weights.

floyd warshall(G, huge=inf)

The Floyd-Warshall algorithm for all pairs shortest paths.

Returns a tuple (distance,path) containing two dictionaries of shortest
distance and predecessor paths.

This algorithm is most appropriate for dense graphs. The running time is
O(nˆ3), and running space is O(nˆ2) where n is the number of nodes in G.

For sparse graphs, see

all pairs shortest path all pairs shortest path length

which are based on Dijkstra’s algorithm.

139



Variables Module networkx.path

predecessor(G, source, target=None, cutoff =None, return seen=None)

Returns dictionary of predecessors for the path from source to all nodes in G.

Optional target returns only predecessors between source and target. Cutoff is
a limit on the number of hops traversed.

Example for the path graph 0-1-2-3

>>> G=path_graph(4)

>>> print G.nodes()

[0, 1, 2, 3]

>>> predecessor(G,0)

{0: [], 1: [0], 2: [1], 3: [2]}

34.2 Variables

Name Description

revision Value: ’’

package Value: ’networkx’

140



Variables Package networkx.readwrite

35 Package networkx.readwrite

A package for reading and writing graphs in various formats.

35.1 Modules

• adjlist: Read and write NetworkX graphs.
(Section 36, p. 137)

• edgelist: Read and write NetworkX graphs.
(Section 37, p. 143)

• gml: Read graphs in GML format.
(Section 38, p. 146)

• gpickle: Read and write NetworkX graphs.
(Section 39, p. 148)

• graphml: Read graphs in GraphML format.
(Section 40, p. 150)

• leda: Read graphs in LEDA format.
(Section 41, p. 151)

• nx yaml: Read and write NetworkX graphs in YAML format.
(Section 42, p. 152)

• sparsegraph6: Read graphs in graph6 and sparse6 format.
(Section 43, p. 153)

35.2 Variables

Name Description

package Value: ’networkx.readwrite’

141



Module networkx.readwrite.adjlist

36 Module networkx.readwrite.adjlist

Read and write NetworkX graphs.

Note that NetworkX graphs can contain any hashable Python object as node (not just
integers and strings). So writing a NetworkX graph as a text file may not always be
what you want: see write gpickle and gread gpickle for that case.

This module provides the following :

Adjacency list with single line per node: Useful for connected or unconnected graphs
without edge data.

write adjlist(G, path) G=read adjlist(path)

Adjacency list with multiple lines per node: Useful for connected or unconnected graphs
with or without edge data.

write multiline adjlist(G, path) read multiline adjlist(path)

Date:

Author: Aric Hagberg (hagberg@lanl.gov) Dan Schult (dschult@colgate.edu)

142



Functions Module networkx.readwrite.adjlist

36.1 Functions

write multiline adjlist(G, path, delimiter=’ ’, comments=’#’)

Write the graph G in multiline adjacency list format to the file or file handle
path.

See read multiline adjlist for file format details.

>>> write_multiline_adjlist(G,"file.adjlist")

path can be a filehandle or a string with the name of the file.

>>> fh=open("file.adjlist")

>>> write_multiline_adjlist(G,fh)

Filenames ending in .gz or .bz2 will be compressed.

>>> write_multiline_adjlist(G,"file.adjlist.gz")

The file will use the default text encoding on your system. It is possible to
write files in other encodings by opening the file with the codecs module. See
doc/examples/unicode.py for hints.

>>> import codecs

>>> fh=codecs.open("file.adjlist",encoding=’utf=8’) # use utf-8 encoding

>>> write_multiline_adjlist(G,fh)

143



Functions Module networkx.readwrite.adjlist

read multiline adjlist(path, comments=’#’, delimiter=’ ’,
create using=None, nodetype=None, edgetype=None)

Read graph in multi-line adjacency list format from path.

>>> G=read_multiline_adjlist("file.adjlist")

path can be a filehandle or a string with the name of the file.

>>> fh=open("file.adjlist")

>>> G=read_multiline_adjlist(fh)

Filenames ending in .gz or .bz2 will be compressed.

>>> G=read_multiline_adjlist("file.adjlist.gz")

nodetype is an optional function to convert node strings to nodetype

For example

>>> G=read_multiline_adjlist("file.adjlist", nodetype=int)

will attempt to convert all nodes to integer type

Since nodes must be hashable, the function nodetype must return hashable
types (e.g. int, float, str, frozenset - or tuples of those, etc.)

edgetype is a function to convert edge data strings to edgetype

>>> G=read_multiline_adjlist("file.adjlist", edgetype=int)

create using is an optional networkx graph type, the default is Graph(), a
simple undirected graph

>>> G=read_multiline_adjlist("file.adjlist", create_using=DiGraph())

The comments character (default=’#’) at the beginning of a line indicates a
comment line.

The entries are separated by delimiter (default=’ ’). If whitespace is significant
in node or edge labels you should use some other delimiter such as a tab or
other symbol.

Example multiline adjlist file format:

# source target for Graph or DiGraph

a 2

b

c

d 1

e

or

# source target for XGraph or XDiGraph with edge data a 2 b
edge-ab-data c edge-ac-data d 1 e edge-de-data

144



Functions Module networkx.readwrite.adjlist

write adjlist(G, path, comments=’#’, delimiter=’ ’)

Write graph G in single-line adjacency-list format to path.

See read adjlist for file format details.

>>> write_adjlist(G, "file.adjlist")

path can be a filehandle or a string with the name of the file.

>>> fh=open("file.adjlist")

>>> write_adjlist(G, fh)

Filenames ending in .gz or .bz2 will be compressed.

>>> write_adjlist(G, "file.adjlist.gz")

The file will use the default text encoding on your system. It is possible to
write files in other encodings by opening the file with the codecs module. See
doc/examples/unicode.py for hints.

>>> import codecs

>>> fh=codecs.open("file.adjlist",encoding=’utf=8’) # use utf-8 encoding

>>> write_adjlist(G,fh)

Does not handle data in XGraph or XDiGraph, use ’write edgelist’ or
’write multiline adjlist’

145



Variables Module networkx.readwrite.adjlist

read adjlist(path, comments=’#’, delimiter=’ ’, create using=None,
nodetype=None)

Read graph in single line adjacency list format from path.

>>> G=read_adjlist("file.adjlist")

path can be a filehandle or a string with the name of the file.

>>> fh=open("file.adjlist")

>>> G=read_adjlist(fh)

Filenames ending in .gz or .bz2 will be compressed.

>>> G=read_adjlist("file.adjlist.gz")

nodetype is an optional function to convert node strings to nodetype

For example

>>> G=read_adjlist("file.adjlist", nodetype=int)

will attempt to convert all nodes to integer type

Since nodes must be hashable, the function nodetype must return hashable
types (e.g. int, float, str, frozenset - or tuples of those, etc.)

create using is an optional networkx graph type, the default is Graph(), a
simple undirected graph

>>> G=read_adjlist("file.adjlist", create_using=DiGraph())

Does not handle edge data: use ’read edgelist’ or ’read multiline adjlist’

The comments character (default=’#’) at the beginning of a line indicates a
comment line.

The entries are separated by delimiter (default=’ ’). If whitespace is significant
in node or edge labels you should use some other delimiter such as a tab or
other symbol.

# source target a b c d e

36.2 Variables

Name Description

credits Value: ’’

continued on next page

146



Variables Module networkx.readwrite.adjlist

Name Description

revision Value: ’’

package Value: ’networkx.readwrite’

147



Module networkx.readwrite.edgelist

37 Module networkx.readwrite.edgelist

Read and write NetworkX graphs.

Note that NetworkX graphs can contain any hashable Python object as node (not just
integers and strings). So writing a NetworkX graph as a text file may not always be
what you want: see write gpickle and gread gpickle for that case.

This module provides the following :

Edgelist format: Useful for connected graphs with or without edge data.

write edgelist(G, path) G=read edgelist(path)

Date:

Author: Aric Hagberg (hagberg@lanl.gov) Dan Schult (dschult@colgate.edu)

37.1 Functions

write edgelist(G, path, comments=’#’, delimiter=’ ’)

Write graph G in edgelist format on file path.

See read edgelist for file format details.

>>> write_edgelist(G, "file.edgelist")

path can be a filehandle or a string with the name of the file.

>>> fh=open("file.edgelist")

>>> write_edgelist(G,fh)

Filenames ending in .gz or .bz2 will be compressed.

>>> write_edgelist(G, "file.edgelist.gz")

The file will use the default text encoding on your system. It is possible to
write files in other encodings by opening the file with the codecs module. See
doc/examples/unicode.py for hints.

>>> import codecs

>>> fh=codecs.open("file.edgelist",encoding=’utf=8’) # use utf-8 encoding

>>> write_edgelist(G,fh)

148



Functions Module networkx.readwrite.edgelist

read edgelist(path, comments=’#’, delimiter=’ ’, create using=None,
nodetype=None, edgetype=None)

Read graph in edgelist format from path.

>>> G=read_edgelist("file.edgelist")

path can be a filehandle or a string with the name of the file.

>>> fh=open("file.edgelist")

>>> G=read_edgelist(fh)

Filenames ending in .gz or .bz2 will be compressed.

>>> G=read_edgelist("file.edgelist.gz")

nodetype is an optional function to convert node strings to nodetype

For example

>>> G=read_edgelist("file.edgelist", nodetype=int)

will attempt to convert all nodes to integer type

Since nodes must be hashable, the function nodetype must return hashable
types (e.g. int, float, str, frozenset - or tuples of those, etc.)

create using is an optional networkx graph type, the default is Graph(), a
simple undirected graph

>>> G=read_edgelist("file.edgelist",create_using=DiGraph())

The comments character (default=’#’) at the beginning of a line indicates a
comment line.

The entries are separated by delimiter (default=’ ’). If whitespace is significant
in node or edge labels you should use some other delimiter such as a tab or
other symbol.

Example edgelist file format:

# source target

a b

a c

d e

or for an XGraph() with edge data

# source target data a b 1 a c 3.14159 d e apple

149



Variables Module networkx.readwrite.edgelist

37.2 Variables

Name Description

credits Value: ’’

revision Value: ’’

package Value: ’networkx.readwrite’

150



Module networkx.readwrite.gml

38 Module networkx.readwrite.gml

Read graphs in GML format. See http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html
for format specification.

Example graphs in GML format: http://www-personal.umich.edu/˜mejn/netdata/ Au-
thor: Aric Hagberg (hagberg@lanl.gov)

38.1 Functions

read gml(path)

Read graph in GML format from path. Returns an XGraph or XDiGraph.

This doesn’t implement the complete GML specification for nested attributes
for graphs, edges, and nodes.

parse gml(lines)

Parse GML format from string or iterable. Returns an XGraph or XDiGraph.

This doesn’t implement the complete GML specification for nested attributes
for graphs, edges, and nodes.

pyparse gml()

pyparser tokenizer for GML graph format

This doesn’t implement the complete GML specification for nested attributes
for graphs, edges, and nodes.

151

http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html
http://www-personal.umich.edu/~mejn/netdata/


Variables Module networkx.readwrite.gml

write gml(G, path)

Write the graph G in GML format to the file or file handle path.

>>> write_gml(G,"file.gml")

path can be a filehandle or a string with the name of the file.

>>> fh=open("file.gml")

>>> write_multiline_adjlist(G,fh)

Filenames ending in .gz or .bz2 will be compressed.

>>> write_multiline_adjlist(G,"file.gml.gz")

The output file will use the default text encoding on your system. It is
possible to write files in other encodings by opening the file with the codecs
module. See doc/examples/unicode.py for hints.

>>> import codecs

>>> fh=codecs.open("file.edgelist",encoding=’iso8859-1’)# use iso8859-1

>>> write_edgelist(G,fh)

GML specifications indicate that the file should only use 7bit ASCII text
encoding.iso8859-1 (latin-1).

Only a single level of attributes for graphs, nodes, and edges, is supported.

38.2 Variables

Name Description

graph Value: None

package Value: ’networkx.readwrite’

152



Module networkx.readwrite.gpickle

39 Module networkx.readwrite.gpickle

Read and write NetworkX graphs.

Note that NetworkX graphs can contain any hashable Python object as node (not just
integers and strings). So writing a NetworkX graph as a text file may not always be
what you want: see write gpickle and gread gpickle for that case.

This module provides the following :

Python pickled format: Useful for graphs with non text representable data.

write gpickle(G, path) read gpickle(path)

Date:

Author: Aric Hagberg (hagberg@lanl.gov) Dan Schult (dschult@colgate.edu)

39.1 Functions

write gpickle(G, path)

Write graph object in Python pickle format.

This will preserve Python objects used as nodes or edges.

>>> write_gpickle(G,"file.gpickle")

See cPickle.

read gpickle(path)

Read graph object in Python pickle format

>>> G=read_gpickle("file.gpickle")

See cPickle.

39.2 Variables

Name Description

credits Value: ’’

revision Value: ’$$’

continued on next page

153



Variables Module networkx.readwrite.gpickle

Name Description

package Value: ’networkx.readwrite’

154



Variables Module networkx.readwrite.graphml

40 Module networkx.readwrite.graphml

Read graphs in GraphML format. http://graphml.graphdrawing.org/ Date:

Author: Aric Hagberg (hagberg@lanl.gov)

40.1 Functions

read graphml(path)

Read graph in GraphML format from path. Returns an XGraph or XDiGraph.

parse graphml(lines)

Read graph in GraphML format from string. Returns an XGraph or
XDiGraph.

40.2 Variables

Name Description

credits Value: ’’

revision Value: ’’

package Value: ’networkx.readwrite’

155

http://graphml.graphdrawing.org/


Variables Module networkx.readwrite.leda

41 Module networkx.readwrite.leda

Read graphs in LEDA format. See http://www.algorithmic-solutions.info/leda guide/graphs/leda native gra
Date:

Author: Aric Hagberg (hagberg@lanl.gov)

41.1 Functions

read leda(path)

Read graph in GraphML format from path. Returns an XGraph or XDiGraph.

parse leda(lines)

Parse LEDA.GRAPH format from string or iterable. Returns an XGraph or
XDiGraph.

41.2 Variables

Name Description

credits Value: ’’

revision Value: ’’

package Value: ’networkx.readwrite’

156

http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html


Variables Module networkx.readwrite.nx yaml

42 Module networkx.readwrite.nx yaml

Read and write NetworkX graphs in YAML format. See http://www.yaml.org for doc-
umentation. Date:

Author: Aric Hagberg (hagberg@lanl.gov)

42.1 Functions

write yaml(G, path, default flow style=False, **kwds)

Write graph G in YAML text format to path.

See http://www.yaml.org

read yaml(path)

Read graph from YAML format from path.

See http://www.yaml.org

42.2 Variables

Name Description

credits Value: ’’

revision Value: ’$$’

package Value: ’networkx.readwrite’

157

http://www.yaml.org
http://www.yaml.org
http://www.yaml.org


Module networkx.readwrite.sparsegraph6

43 Module networkx.readwrite.sparsegraph6

Read graphs in graph6 and sparse6 format. See http://cs.anu.edu.au/˜bdm/data/formats.txt
Date:

Author: Aric Hagberg (hagberg@lanl.gov)

43.1 Functions

read graph6 list(path)

Read simple undirected graphs in graph6 format from path. Returns a list of
Graphs, one for each line in file.

read graph6(path)

Read simple undirected graphs in graph6 format from path. Returns a single
Graph.

read sparse6 list(path)

Read simple undirected graphs in sparse6 format from path. Returns a list of
Graphs, one for each line in file.

read sparse6(path)

Read simple undirected graphs in sparse6 format from path. Returns a single
Graph.

graph6data(str)

Convert graph6 character sequence to 6-bit integers.

158

http://cs.anu.edu.au/~bdm/data/formats.txt


Variables Module networkx.readwrite.sparsegraph6

graph6n(data)

Read initial one or four-unit value from graph6 sequence. Return value, rest of
seq.

parse graph6(str)

Read undirected graph in graph6 format.

parse sparse6(str)

Read undirected graph in sparse6 format.

43.2 Variables

Name Description

credits Value: ’’

revision Value: ’’

package Value: ’networkx.readwrite’

159



Variables Module networkx.release

44 Module networkx.release

Release data for NetworkX. Author: Aric Hagberg (hagberg@lanl.gov) Pieter Swart
(swart@lanl.gov) Dan Schult (dschult@colgate.edu)

44.1 Variables

Name Description

name Value: ’networkx’

version Value: ’0.36’

description Value: ’Python package for creating and

manipulating graphs and ...

long description Value: ’\nNetworkX is a Python package

for the creation, manipul...

license Value: ’LGPL’

authors Value: {’Hagberg’: (’Aric Hagberg’,

’hagberg@lanl.gov’), ’Schult...

url Value: ’http://networkx.lanl.gov/’

download url Value:
’http://networkx.lanl.gov/download’

platforms Value: [’Linux’, ’Mac OSX’, ’Windows

XP/2000/NT’]

keywords Value: [’Networks’, ’Graph Theory’,

’Mathematics’, ’network’, ’g...

classifiers Value: [’Development Status :: 4 -

Beta’, ’Intended Audience :: ...

date Value: ’Tue Jun 16 14:09:53 2009’

package Value: ’networkx’

160



Module networkx.search

45 Module networkx.search

Search algorithms.

See also networkx.path. Date:

Author: Eben Kenah (ekenah@t7.lanl.gov) Aric Hagberg (hagberg@lanl.gov)

45.1 Functions

dfs preorder(G, source=None, reverse graph=False)

Return list of nodes connected to source in DFS preorder. Traverse the graph
G with depth-first-search from source. Non-recursive algorithm.

dfs postorder(G, source=None, reverse graph=False)

Return list of nodes connected to source in DFS preorder. Traverse the graph
G with depth-first-search from source. Non-recursive algorithm.

dfs tree(G, source=None, reverse graph=False)

Return directed graph (tree) of depth-first-search with root at source. If the
graph is disconnected, return a disconnected graph (forest).

dfs predecessor(G, source=None, reverse graph=False)

Return predecessors of depth-first-search with root at source.

dfs successor(G, source=None, reverse graph=False)

Return succesors of depth-first-search with root at source.

45.2 Variables

161



Variables Module networkx.search

Name Description

credits Value: ’’

revision Value: ’’

package Value: ’networkx’

162



Module networkx.spectrum

46 Module networkx.spectrum

Laplacian, adjacency matrix, and spectrum of graphs.

Needs numpy array package: numpy.scipy.org. Author: Aric Hagberg (hagberg@lanl.gov)
Pieter Swart (swart@lanl.gov) Dan Schult(dschult@colgate.edu)

46.1 Functions

adj matrix(G, nodelist=None)

Return adjacency matrix of graph as a numpy matrix.

This just calls networkx.convert.to numpy matrix.

If you want a pure python adjacency matrix represntation try
networkx.convert.to dict of dicts with weighted=False, which will return a
dictionary-of-dictionaries format that can be addressed as a sparse matrix.

laplacian(G, nodelist=None)

Return standard combinatorial Laplacian of G as a numpy matrix.

Return the matrix L = D - A, where

D is the diagonal matrix in which the i’th entry is the degree of node
i A is the adjacency matrix.

normalized laplacian(G, nodelist=None)

Return normalized Laplacian of G as a numpy matrix.

See Spectral Graph Theory by Fan Chung-Graham. CBMS Regional
Conference Series in Mathematics, Number 92, 1997.

laplacian spectrum(G)

Return eigenvalues of the Laplacian of G

163



Variables Module networkx.spectrum

adjacency spectrum(G)

Return eigenvalues of the adjacency matrix of G

combinatorial laplacian(G, nodelist=None)

Return standard combinatorial Laplacian of G as a numpy matrix.

Return the matrix L = D - A, where

D is the diagonal matrix in which the i’th entry is the degree of node
i A is the adjacency matrix.

generalized laplacian(G, nodelist=None)

Return normalized Laplacian of G as a numpy matrix.

See Spectral Graph Theory by Fan Chung-Graham. CBMS Regional
Conference Series in Mathematics, Number 92, 1997.

46.2 Variables

Name Description

package Value: ’networkx’

164



Variables Package networkx.tests

47 Package networkx.tests

47.1 Modules

• benchmark (Section 48, p. 161)
• drawing (Section 49, p. 163)
• generators (Section 50, p. 164)
• readwrite (Section 51, p. 165)
• test (Section 52, p. 166)

47.2 Variables

Name Description

package Value: ’networkx.tests’

165



Class Benchmark Module networkx.tests.benchmark

48 Module networkx.tests.benchmark

48.1 Variables

Name Description

package Value: ’networkx.tests’

48.2 Class Benchmark

object

networkx.tests.benchmark.Benchmark

Benchmark a method or simple bit of code using different Graph classes. If the test
code is the same for each graph class, then you can set it during instantiation through
the argument test string. The argument test string can also be a tuple of test code and
setup code. The code is entered as a string valid for use with the timeit module.

Example: >>> b=Benchmark([’Graph’,’XGraph’]) >>> b[’Graph’]=(’G.add nodes from(nlist)’,’nlist=ra
>>> b.run()

48.2.1 Methods

init (self, graph classes, title=’’, test string=None, runs=3, reps=1000)

x. init (...) initializes x; see x. class . doc for signature Overrides:
object. init extit(inherited documentation)

setitem (self, graph class, (test str, setup str))

Set a simple bit of code and setup string for the test. Use this for cases where
the code differs from one class to another.

run(self )

Run the benchmark for each class and print results.

Inherited from object

delattr (), format (), getattribute (), hash (), new (), reduce (),
reduce ex (), repr (), setattr (), sizeof (), str (), subclasshook ()

166



Class Benchmark Module networkx.tests.benchmark

48.2.2 Properties

Name Description

Inherited from object

class

167



Variables Package networkx.tests.drawing

49 Package networkx.tests.drawing

49.1 Variables

Name Description

package Value: None

168



Variables Package networkx.tests.generators

50 Package networkx.tests.generators

50.1 Variables

Name Description

package Value: None

169



Variables Package networkx.tests.readwrite

51 Package networkx.tests.readwrite

51.1 Variables

Name Description

package Value: None

170



Variables Module networkx.tests.test

52 Module networkx.tests.test

52.1 Functions

all()

run()

52.2 Variables

Name Description

package Value: ’networkx.tests’

171



Module networkx.threshold

53 Module networkx.threshold

Threshold Graphs - Creation, manipulation and identification. Version: $Revision:
1049 $

Date: $Date: 2005-06-17 08:06:22 -0600 (Fri, 17 Jun 2005) $

Author: Aric Hagberg (hagberg@lanl.gov) Pieter Swart (swart@lanl.gov) Dan Schult
(dschult@colgate.edu)

53.1 Functions

is threshold graph(G)

Returns True if G is a threshold graph.

is threshold sequence(degree sequence)

Returns True if the sequence is a threshold degree seqeunce.

Uses the property that a threshold graph must be constructed by adding either
dominating or isolated nodes. Thus, it can be deconstructed iteratively by
removing a node of degree zero or a node that connects to the remaining nodes.
If this deconstruction failes then the sequence is not a threshold sequence.

172



Functions Module networkx.threshold

creation sequence(degree sequence, with labels=False, compact=False)

Determines the creation sequence for the given threshold degree sequence.

The creation sequence is a list of single characters ’d’ or ’i’: ’d’ for dominating
or ’i’ for isolated vertices. Dominating vertices are connected to all vertices
present when it is added. The first node added is by convention ’d’. This list
can be converted to a string if desired using “”.join(cs)

If with labels==True: Returns a list of 2-tuples containing the vertex number
and a character ’d’ or ’i’ which describes the type of vertex.

If compact==True: Returns the creation sequence in a compact form that is
the number of ’i’s and ’d’s alternating. Examples: [1,2,2,3] represents
d,i,i,d,d,i,i,i [3,1,2] represents d,d,d,i,d,d

Notice that the first number is the first vertex to be used for construction and
so is always ’d’.

with labels and compact cannot both be True.

Returns None if the sequence is not a threshold sequence

make compact(creation sequence)

Returns the creation sequence in a compact form that is the number of ’i’s and
’d’s alternating. Examples: [1,2,2,3] represents d,i,i,d,d,i,i,i. [3,1,2] represents
d,d,d,i,d,d. Notice that the first number is the first vertex to be used for
construction and so is always ’d’.

Labeled creation sequences lose their labels in the compact representation.

uncompact(creation sequence)

Converts a compact creation sequence for a threshold graph to a standard
creation sequence (unlabeled). If the creation sequence is already standard,
return it. See creation sequence.

173



Functions Module networkx.threshold

creation sequence to weights(creation sequence)

Returns a list of node weights which create the threshold graph designated by
the creation sequence. The weights are scaled so that the threshold is 1.0. The
order of the nodes is the same as that in the creation sequence.

weights to creation sequence(weights, threshold=1, with labels=False,
compact=False)

Returns a creation sequence for a threshold graph determined by the weights
and threshold given as input. If the sum of two node weights is greater than
the threshold value, an edge is created between these nodes.

The creation sequence is a list of single characters ’d’ or ’i’: ’d’ for dominating
or ’i’ for isolated vertices. Dominating vertices are connected to all vertices
present when it is added. The first node added is by convention ’d’.

If with labels==True: Returns a list of 2-tuples containing the vertex number
and a character ’d’ or ’i’ which describes the type of vertex.

If compact==True: Returns the creation sequence in a compact form that is
the number of ’i’s and ’d’s alternating. Examples: [1,2,2,3] represents
d,i,i,d,d,i,i,i [3,1,2] represents d,d,d,i,d,d

Notice that the first number is the first vertex to be used for construction and
so is always ’d’.

with labels and compact cannot both be True.

threshold graph(creation sequence)

Create a threshold graph from the creation sequence or compact
creation sequence.

The input sequence can be a

creation sequence (e.g. [’d’,’i’,’d’,’d’,’d’,’i’]) labeled creation sequence (e.g.
[(0,’d’),(2,’d’),(1,’i’)]) compact creation sequence (e.g. [2,1,1,2,0])

Use cs=creation sequence(degree sequence,labeled=True) to convert a degree
sequence to a creation sequence.

Returns None if the sequence is not valid

174



Functions Module networkx.threshold

find alternating 4 cycle(G)

Returns False if there aren’t any alternating 4 cycles. Otherwise returns the
cycle as [a,b,c,d] where (a,b) and (c,d) are edges and (a,c) and (b,d) are not.

find threshold graph(G)

Return a threshold subgraph that is close to largest in G. The threshold graph
will contain the largest degree node in G.

find creation sequence(G)

Find a threshold subgraph that is close to largest in G. Returns the labeled
creation sequence of that threshold graph.

triangles(creation sequence)

Compute number of triangles in the threshold graph with the given creation
sequence.

triangle sequence(creation sequence)

Return triangle sequence for the given threshold graph creation sequence.

cluster sequence(creation sequence)

Return cluster sequence for the given threshold graph creation sequence.

degree sequence(creation sequence)

Return degree sequence for the threshold graph with the given creation
sequence

175



Functions Module networkx.threshold

density(creation sequence)

Return the density of the graph with this creation sequence. The density is
the fraction of possible edges present.

degree correlation(creation sequence)

Return the degree-degree correlation over all edges.

shortest path(creation sequence, u, v)

Find the shortest path between u and v in a threshold graph G with the given
creation sequence.

For an unlabeled creation sequence, the vertices u and v must be integers in
(0,len(sequence)) refering to the position of the desired vertices in the
sequence.

For a labeled creation sequence, u and v are labels of veritices.

Use cs=creation sequence(degree sequence,with labels=True) to convert a
degree sequence to a creation sequence.

Returns a list of vertices from u to v. Example: if they are neighbors, it
returns [u,v]

shortest path length(creation sequence, i)

Return the shortest path length from indicated node to every other node for
the threshold graph with the given creation sequence. Node is indicated by
index i in creation sequence unless creation sequence is labeled in which case, i
is taken to be the label of the node.

Paths lengths in threshold graphs are at most 2. Length to unreachable nodes
is set to -1.

176



Functions Module networkx.threshold

betweenness sequence(creation sequence, normalized=True)

Return betweenness for the threshold graph with the given creation sequence.
The result is unscaled. To scale the values to the iterval [0,1] divide by
(n-1)*(n-2).

eigenvectors(creation sequence)

Return a 2-tuple of Laplacian eigenvalues and eigenvectors for the threshold
network with creation sequence. The first value is a list of eigenvalues. The
second value is a list of eigenvectors. The lists are in the same order so
corresponding eigenvectors and eigenvalues are in the same position in the two
lists.

Notice that the order of the eigenvalues returned by eigenvalues(cs) may not
correspond to the order of these eigenvectors.

spectral projection(u, eigenpairs)

Returns the coefficients of each eigenvector in a projection of the vector u onto
the normalized eigenvectors which are contained in eigenpairs.

eigenpairs should be a list of two objects. The first is a list of eigenvalues and
the second a list of eigenvectors. The eigenvectors should be lists.

There’s not a lot of error checking on lengths of arrays, etc. so be careful.

177



Functions Module networkx.threshold

eigenvalues(creation sequence)

Return sequence of eigenvalues of the Laplacian of the threshold graph for the
given creation sequence.

Based on the Ferrer’s diagram method. The spectrum is integral and is the
conjugate of the degree sequence.

See:

@Article{degree-merris-1994,

author = {Russel Merris},

title = {Degree maximal graphs are Laplacian inte-

gral},

journal = {Linear Algebra Appl.},

year = {1994},

volume = {199},

pages = {381--389},

}

random threshold sequence(n, p, seed=None)

Create a random threshold sequence of size n. A creation sequence is built by
randomly choosing d’s with probabiliy p and i’s with probability 1-p.

>>> s=random_threshold_sequence(10,0.5)

returns a threshold sequence of length 10 with equal probably of an i or a d at
each position.

A “random” threshold graph can be built with

>>> G=threshold_graph(random_threshold_sequence(10,0.5))

right d threshold sequence(n, m)

Create a skewed threshold graph with a given number of vertices (n) and a
given number of edges (m).

The routine returns an unlabeled creation sequence for the threshold graph.

FIXME: describe algorithm

178



Variables Module networkx.threshold

left d threshold sequence(n, m)

Create a skewed threshold graph with a given number of vertices (n) and a
given number of edges (m).

The routine returns an unlabeled creation sequence for the threshold graph.

FIXME: describe algorithm

swap d(cs, p split=1.0, p combine=1.0, seed=None)

Perform a “swap” operation on a threshold sequence.

The swap preserves the number of nodes and edges in the graph for the given
sequence. The resulting sequence is still a threshold sequence.

Perform one split and one combine operation on the ’d’s of a creation sequence
for a threshold graph. This operation maintains the number of nodes and
edges in the graph, but shifts the edges from node to node maintaining the
threshold quality of the graph.

53.2 Variables

Name Description

credits Value: ’’

package Value: ’networkx’

179



Class Tree Module networkx.tree

54 Module networkx.tree

EXPERIMENTAL: Base classes for trees and forests. Author: Aric Hagberg (hag-
berg@lanl.gov)

54.1 Variables

Name Description

package Value: ’networkx’

54.2 Class Tree

object

networkx.graph.Graph

networkx.tree.Tree

Known Subclasses: networkx.tree.DirectedForest, networkx.tree.DirectedTree, net-
workx.tree.Forest, networkx.tree.RootedTree

A free (unrooted) tree.

54.2.1 Methods

init (self, data=None, **kwds)

Initialize Graph.

>>> G=Graph(name="empty")

creates empty graph G with G.name=“empty” Overrides: object. init
extit(inherited documentation)

180



Class Tree Module networkx.tree

add node(self, n)

Add a single node n to the graph.

The node n can be any hashable object except None.

A hashable object is one that can be used as a key in a Python dictionary.
This includes strings, numbers, tuples of strings and numbers, etc. On many
platforms this also includes mutables such as Graphs e.g., though one should
be careful the hash doesn’t change on mutables.

Example:

>>> from networkx import *

>>> G=Graph()

>>> K3=complete_graph(3)

>>> G.add_node(1)

>>> G.add_node(’Hello’)

>>> G.add_node(K3)

>>> G.number_of_nodes()

3

Overrides: networkx.graph.Graph.add node extit(inherited documentation)

add nodes from(self, nbunch)

Add multiple nodes to the graph.

nlist: A container of nodes that will be iterated through once (thus it should
be an iterator or be iterable). Each element of the container should be a valid
node type: any hashable type except None. See add node for details.

Examples:

>>> from networkx import *

>>> G=Graph()

>>> K3=complete_graph(3)

>>> G.add_nodes_from(’Hello’)

>>> G.add_nodes_from(K3)

>>> sorted(G.nodes())

[0, 1, 2, ’H’, ’e’, ’l’, ’o’]

Overrides: networkx.graph.Graph.add nodes from extit(inherited
documentation)

181



Class Tree Module networkx.tree

delete node(self, n)

Delete node n from graph. Attempting to delete a non-existent node will raise
an exception. Overrides: networkx.graph.Graph.delete node extit(inherited
documentation)

delete nodes from(self, nbunch)

Remove nodes in nlist from graph.

nlist: an iterable or iterator containing valid node names.

Attempting to delete a non-existent node will raise an exception. This could
mean some nodes got deleted and other valid nodes did not. Overrides:
networkx.graph.Graph.delete nodes from extit(inherited documentation)

add edge(self, u, v=None)

Add a single edge (u,v) to the graph.

>> G.add edge(u,v) and >>> G.add edge( (u,v) ) are equivalent forms of
adding a single edge between nodes u and v. The nodes u and v will be
automatically added if not already in the graph. They must be a hashable
(except None) Python object.

The following examples all add the edge (1,2) to graph G.

>>> G=Graph()

>>> G.add_edge( 1, 2 ) # explicit two node form

>>> G.add_edge( (1,2) ) # single edge as tuple of two nodes

>>> G.add_edges_from( [(1,2)] ) # add edges from iterable container

Overrides: networkx.graph.Graph.add edge extit(inherited documentation)

add edges from(self, ebunch)

Add all the edges in ebunch to the graph.

ebunch: Container of 2-tuples (u,v). The container must be iterable or an
iterator. It is iterated over once. Adding the same edge twice has no effect and
does not raise an exception. Overrides:
networkx.graph.Graph.add edges from extit(inherited documentation)

182



Class Tree Module networkx.tree

delete edge(self, u, v=None)

Delete the single edge (u,v).

Can be used in two basic forms: >>> G.delete edge(u,v) and >>

G.delete edge( (u,v) ) are equivalent ways of deleting a single edge between
nodes u and v.

Return without complaining if the nodes or the edge do not exist. Overrides:
networkx.graph.Graph.delete edge extit(inherited documentation)

delete edges from(self, ebunch)

Delete the edges in ebunch from the graph.

ebunch: an iterator or iterable of 2-tuples (u,v).

Edges that are not in the graph are ignored. Overrides:
networkx.graph.Graph.delete edges from extit(inherited documentation)

add leaf(self, u, v=None)

delete leaf(self, u, v=None)

add leaves from(self, ebunch)

delete leaves from(self, ebunch)

union sub(self, T1, **kwds)

Polymorphic helper method for Graph.union().

Required keywords: v from and v to, where v from is the node in self to which
v to should be attached as child.

union sub tree helper(self, T1, parent, grandparent=None)

Inherited from networkx.graph.Graph(Section 28.2)

contains (), getitem (), iter (), len (), str (), add cycle(), add path(),
clear(), copy(), degree(), degree iter(), edge boundary(), edges(), edges iter(),
get edge(), has edge(), has neighbor(), has node(), info(), is directed(), neigh-
bors(), neighbors iter(), node boundary(), nodes(), nodes iter(), number of edges(),
number of nodes(), order(), prepare nbunch(), size(), subgraph(), to directed(),

183



Class RootedTree Module networkx.tree

to undirected()

Inherited from object

delattr (), format (), getattribute (), hash (), new (), reduce (),
reduce ex (), repr (), setattr (), sizeof (), subclasshook ()

54.2.2 Properties

Name Description

Inherited from object

class

54.3 Class RootedTree

object

networkx.graph.Graph

networkx.tree.Tree

object

networkx.graph.Graph

networkx.tree.RootedTree

A rooted tree.

54.3.1 Methods

init (self, root, data=None, **kwds)

Initialize Graph.

>>> G=Graph(name="empty")

creates empty graph G with G.name=“empty” Overrides: object. init
extit(inherited documentation)

184



Class RootedTree Module networkx.tree

delete node(self, n)

Delete node n from graph. Attempting to delete a non-existent node will raise
an exception. Overrides: networkx.graph.Graph.delete node extit(inherited
documentation)

add edge(self, u, v=None)

Add a single edge (u,v) to the graph.

>> G.add edge(u,v) and >>> G.add edge( (u,v) ) are equivalent forms of
adding a single edge between nodes u and v. The nodes u and v will be
automatically added if not already in the graph. They must be a hashable
(except None) Python object.

The following examples all add the edge (1,2) to graph G.

>>> G=Graph()

>>> G.add_edge( 1, 2 ) # explicit two node form

>>> G.add_edge( (1,2) ) # single edge as tuple of two nodes

>>> G.add_edges_from( [(1,2)] ) # add edges from iterable container

Overrides: networkx.graph.Graph.add edge extit(inherited documentation)

parent(self, u)

children(self, u)

root tree(self, root)

Inherited from networkx.tree.Tree(Section 54.2)

add edges from(), add leaf(), add leaves from(), add node(), add nodes from(),
delete edge(), delete edges from(), delete leaf(), delete leaves from(), delete nodes from(),
union sub(), union sub tree helper()

Inherited from networkx.graph.Graph(Section 28.2)

contains (), getitem (), iter (), len (), str (), add cycle(), add path(),
clear(), copy(), degree(), degree iter(), edge boundary(), edges(), edges iter(),
get edge(), has edge(), has neighbor(), has node(), info(), is directed(), neigh-
bors(), neighbors iter(), node boundary(), nodes(), nodes iter(), number of edges(),
number of nodes(), order(), prepare nbunch(), size(), subgraph(), to directed(),
to undirected()

Inherited from object

delattr (), format (), getattribute (), hash (), new (), reduce (),

185



Class DirectedTree Module networkx.tree

reduce ex (), repr (), setattr (), sizeof (), subclasshook ()

54.3.2 Properties

Name Description

Inherited from object

class

54.4 Class DirectedTree

object

networkx.graph.Graph

networkx.tree.Tree

object

networkx.graph.Graph

networkx.digraph.DiGraph

networkx.tree.DirectedTree

A directed tree.

54.4.1 Methods

init (self, data=None, **kwds)

Initialize Graph.

>>> G=Graph(name="empty")

creates empty graph G with G.name=“empty” Overrides: object. init
extit(inherited documentation)

186



Class DirectedTree Module networkx.tree

delete node(self, n)

Delete node n from the digraph. Attempting to delete a non-existent node will
raise a NetworkXError. Overrides: networkx.graph.Graph.delete node
extit(inherited documentation)

add edge(self, u, v=None)

Add a single directed edge (u,v) to the digraph.

>> G.add edge(u,v) and >>> G.add edge( (u,v) ) are equivalent forms of
adding a single edge between nodes u and v. The nodes u and v will be
automatically added if not already in the graph. They must be a hashable
(except None) Python object.

For example, the following examples all add the edge (1,2) to the digraph G.

>>> G=DiGraph()

>>> G.add_edge( 1, 2 ) # explicit two node form

>>> G.add_edge( (1,2) ) # single edge as tuple of two nodes

>>> G.add_edges_from( [(1,2)] ) # list of edges form

Overrides: networkx.graph.Graph.add edge extit(inherited documentation)

delete edge(self, u, v=None)

Delete the single directed edge (u,v) from the digraph.

Can be used in two basic forms >>> G.delete edge(u,v) and G.delete edge(
(u,v) ) are equivalent ways of deleting a directed edge u->v.

If the edge does not exist return without complaining. Overrides:
networkx.graph.Graph.delete edge extit(inherited documentation)

Inherited from networkx.tree.Tree(Section 54.2)

add edges from(), add leaf(), add leaves from(), add node(), add nodes from(),
delete edges from(), delete leaf(), delete leaves from(), delete nodes from(),
union sub(), union sub tree helper()

Inherited from networkx.digraph.DiGraph(Section 9.2)

clear(), copy(), degree iter(), edges iter(), in degree(), in degree iter(), in edges(),
in edges iter(), in neighbors(), is directed(), neighbors(), neighbors iter(), out degree(),
out degree iter(), out edges(), out edges iter(), out neighbors(), predecessors(),
predecessors iter(), reverse(), subgraph(), successors(), successors iter(), to directed(),
to undirected()

Inherited from networkx.graph.Graph(Section 28.2)

187



Class Forest Module networkx.tree

contains (), getitem (), iter (), len (), str (), add cycle(), add path(),
degree(), edge boundary(), edges(), get edge(), has edge(), has neighbor(),
has node(), info(), node boundary(), nodes(), nodes iter(), number of edges(),
number of nodes(), order(), prepare nbunch(), size()

Inherited from object

delattr (), format (), getattribute (), hash (), new (), reduce (),
reduce ex (), repr (), setattr (), sizeof (), subclasshook ()

54.4.2 Properties

Name Description

Inherited from object

class

54.5 Class Forest

object

networkx.graph.Graph

networkx.tree.Tree

object

networkx.graph.Graph

networkx.tree.Forest

A forest.

54.5.1 Methods

init (self, data=None, **kwds)

Initialize Graph.

>>> G=Graph(name="empty")

creates empty graph G with G.name=“empty” Overrides: object. init
extit(inherited documentation)

188



Class Forest Module networkx.tree

add node(self, n)

Add a single node n to the graph.

The node n can be any hashable object except None.

A hashable object is one that can be used as a key in a Python dictionary.
This includes strings, numbers, tuples of strings and numbers, etc. On many
platforms this also includes mutables such as Graphs e.g., though one should
be careful the hash doesn’t change on mutables.

Example:

>>> from networkx import *

>>> G=Graph()

>>> K3=complete_graph(3)

>>> G.add_node(1)

>>> G.add_node(’Hello’)

>>> G.add_node(K3)

>>> G.number_of_nodes()

3

Overrides: networkx.graph.Graph.add node extit(inherited documentation)

delete node(self, n)

Delete node n from graph. Attempting to delete a non-existent node will raise
an exception. Overrides: networkx.graph.Graph.delete node extit(inherited
documentation)

add edge(self, u, v=None)

Add a single edge (u,v) to the graph.

>> G.add edge(u,v) and >>> G.add edge( (u,v) ) are equivalent forms of
adding a single edge between nodes u and v. The nodes u and v will be
automatically added if not already in the graph. They must be a hashable
(except None) Python object.

The following examples all add the edge (1,2) to graph G.

>>> G=Graph()

>>> G.add_edge( 1, 2 ) # explicit two node form

>>> G.add_edge( (1,2) ) # single edge as tuple of two nodes

>>> G.add_edges_from( [(1,2)] ) # add edges from iterable container

Overrides: networkx.graph.Graph.add edge extit(inherited documentation)

189



Class Forest Module networkx.tree

delete edge(self, u, v=None)

Delete the single edge (u,v).

Can be used in two basic forms: >>> G.delete edge(u,v) and >>

G.delete edge( (u,v) ) are equivalent ways of deleting a single edge between
nodes u and v.

Return without complaining if the nodes or the edge do not exist. Overrides:
networkx.graph.Graph.delete edge extit(inherited documentation)

tree(self, n=None)

Return tree containing node n. If no node is specified return list of all trees in
forest.

tree nodes(self, n=None)

Return tree containing node n. If no node is specified return list of all trees in
forest.

Inherited from networkx.tree.Tree(Section 54.2)

add edges from(), add leaf(), add leaves from(), add nodes from(), delete edges from(),
delete leaf(), delete leaves from(), delete nodes from(), union sub(), union sub tree helper()

Inherited from networkx.graph.Graph(Section 28.2)

contains (), getitem (), iter (), len (), str (), add cycle(), add path(),
clear(), copy(), degree(), degree iter(), edge boundary(), edges(), edges iter(),
get edge(), has edge(), has neighbor(), has node(), info(), is directed(), neigh-
bors(), neighbors iter(), node boundary(), nodes(), nodes iter(), number of edges(),
number of nodes(), order(), prepare nbunch(), size(), subgraph(), to directed(),
to undirected()

Inherited from object

delattr (), format (), getattribute (), hash (), new (), reduce (),
reduce ex (), repr (), setattr (), sizeof (), subclasshook ()

54.5.2 Properties

Name Description

Inherited from object

continued on next page

190



Class DirectedForest Module networkx.tree

Name Description

class

54.6 Class DirectedForest

object

networkx.graph.Graph

networkx.digraph.DiGraph

object

networkx.graph.Graph

networkx.tree.Tree

networkx.tree.DirectedForest

54.6.1 Methods

Inherited from networkx.digraph.DiGraph(Section 9.2)

init (), add edge(), add edges from(), add node(), add nodes from(), clear(),
copy(), degree iter(), delete edge(), delete edges from(), delete node(), delete nodes from(),
edges iter(), in degree(), in degree iter(), in edges(), in edges iter(), in neighbors(),
is directed(), neighbors(), neighbors iter(), out degree(), out degree iter(), out edges(),
out edges iter(), out neighbors(), predecessors(), predecessors iter(), reverse(),
subgraph(), successors(), successors iter(), to directed(), to undirected()

Inherited from networkx.tree.Tree(Section 54.2)

add leaf(), add leaves from(), delete leaf(), delete leaves from(), union sub(),
union sub tree helper()

Inherited from networkx.graph.Graph(Section 28.2)

contains (), getitem (), iter (), len (), str (), add cycle(), add path(),
degree(), edge boundary(), edges(), get edge(), has edge(), has neighbor(),
has node(), info(), node boundary(), nodes(), nodes iter(), number of edges(),
number of nodes(), order(), prepare nbunch(), size()

Inherited from object

191



Class DirectedForest Module networkx.tree

delattr (), format (), getattribute (), hash (), new (), reduce (),
reduce ex (), repr (), setattr (), sizeof (), subclasshook ()

54.6.2 Properties

Name Description

Inherited from object

class

192



Module networkx.utils

55 Module networkx.utils

Utilities for networkx package Date: $Date: 2005-06-15 08:30:40 -0600 (Wed, 15 Jun
2005) $

Author: Aric Hagberg (hagberg@lanl.gov) Dan Schult(dschult@colgate.edu)

55.1 Functions

is singleton(obj )

Is string like or not iterable.

is string like(obj )

Check if obj is string.

iterable(obj )

Return True if obj is iterable with a well-defined len()

flatten(obj, result=None)

Return flattened version of (possibly nested) iterable obj.

iterable to string(obj, sep=’’)

Return string obtained by concatenating the string representation of each
element of an iterable obj, with an optional internal string separator specified.

is list of ints(intlist)

Return True if list is a list of ints.

193



Functions Module networkx.utils

scipy pareto sequence(n, exponent=1.0)

Return sample sequence of length n from a Pareto distribution.

scipy powerlaw sequence(n, exponent=2.0)

Return sample sequence of length n from a power law distribution.

scipy poisson sequence(n, mu=1.0)

Return sample sequence of length n from a Poisson distribution.

scipy uniform sequence(n)

Return sample sequence of length n from a uniform distribution.

scipy discrete sequence(n, distribution=False)

Return sample sequence of length n from a given discrete distribution

distribution=histogram of values, will be normalized

gsl pareto sequence(n, exponent=1.0, scale=1.0, seed=None)

Return sample sequence of length n from a Pareto distribution.

gsl powerlaw sequence(n, exponent=2.0, scale=1.0, seed=None)

Return sample sequence of length n from a power law distribution.

gsl poisson sequence(n, mu=1.0, seed=None)

Return sample sequence of length n from a Poisson distribution.

194



Variables Module networkx.utils

gsl uniform sequence(n, seed=None)

Return sample sequence of length n from a uniform distribution.

pareto sequence(n, exponent=1.0)

Return sample sequence of length n from a Pareto distribution.

powerlaw sequence(n, exponent=2.0)

Return sample sequence of length n from a power law distribution.

uniform sequence(n)

Return sample sequence of length n from a uniform distribution.

cumulative distribution(distribution)

Return normalized cumulative distribution from discrete distribution.

discrete sequence(n, distribution=None, cdistribution=None)

Return sample sequence of length n from a given discrete distribution or
discrete cumulative distribution.

One of the following must be specified.

distribution = histogram of values, will be normalized

cdistribution = normalized discrete cumulative distribution

55.2 Variables

Name Description

credits Value: ’’

revision Value: ’$Revision: 1029 $’

continued on next page

195



Variables Module networkx.utils

Name Description

package Value: ’networkx’

196



Class XDiGraph Module networkx.xdigraph

56 Module networkx.xdigraph

Base class for XDiGraph.

XDiGraph allows directed graphs with self-loops, multiple edges, arbitrary (hashable)
objects as nodes, and arbitrary objects associated with edges. Author: Aric Hagberg
(hagberg@lanl.gov) Pieter Swart (swart@lanl.gov) Dan Schult(dschult@colgate.edu)

56.1 Variables

Name Description

package Value: ’networkx’

56.2 Class XDiGraph

object

networkx.graph.Graph

networkx.digraph.DiGraph

networkx.xdigraph.XDiGraph

Digraphs with (optional) self-loops, (optional) multiple edges, arbitrary (hashable) ob-
jects as nodes, and arbitrary objects associated with edges.

An XDiGraph edge is uniquely specified by a 3-tuple e=(n1,n2,x), where n1 and n2 are
(hashable) objects (nodes) and x is an arbitrary (and not necessarily unique) object
associated with that edge.

See the documentation of XGraph for the use of the optional parameters selfloops (de-
faults is False) and multiedges (default is False).

XDiGraph inherits from DiGraph, with all purely node-specific methods identical to
those of DiGraph. XDiGraph edges are identical to XGraph edges, except that they are
directed rather than undirected. XDiGraph replaces the following DiGraph methods:

• init : read multiedges and selfloops optional args.

• add edge

• add edges from

• delete edge

197



Class XDiGraph Module networkx.xdigraph

• delete edges from

• has edge

• has predecessor

• has successor

• get edge

• edges iter

• in edges iter

• out edges iter

• neighbors iter

• successors iter

• predecessors iter

• degree iter

• out degree iter

• in degree iter

• subgraph

• copy

• to undirected

• reverse

XDiGraph also adds the following methods to those of DiGraph:

• allow selfloops

• remove all selfloops

• ban selfloops

• nodes with selfloops

• self loop edges

• number of selfloops

• delete multiedge

• allow multiedges

• ban multiedges

198



Class XDiGraph Module networkx.xdigraph

• remove all multiedges

While XDiGraph does not inherit from XGraph, we compare them here. XDigraph adds
the following methods to those of XGraph:

• has successor

• successors

• successors iter

• has predecessor

• predecessors

• predecessors iter

• out degree

• out degree iter

• in degree

• in degree iter

• reverse

56.2.1 Methods

init (self, data=None, name=’’, selfloops=False, multiedges=False)

Initialize XDiGraph.

Optional arguments:: name: digraph name (default=“No Name”) selfloops: if
True then selfloops are allowed (default=False) multiedges: if True then
multiple edges are allowed (default=False) Overrides: object. init

199



Class XDiGraph Module networkx.xdigraph

add edge(self, n1, n2=None, x=None)

Add a single directed edge to the digraph.

Can be called as G.add edge(n1,n2,x) or as G.add edge(e), where e=(n1,n2,x).

If called as G.add edge(n1,n2) or G.add edge(e), with e=(n1,n2), then this is
interpreted as adding the edge (n1,n2,None) to be compatible with the Graph
and DiGraph classes.

n1,n2 are node objects, and are added to the Graph if not already present.
Nodes must be hashable Python objects (except None).

x is an arbitrary (not necessarily hashable) object associated with this edge. It
can be used to associate one or more, labels, data records, weights or any
arbirary objects to edges. The default is the Python None.

For example, if the graph G was created with

>>> G=XDiGraph()

then G.add edge(1,2,“blue”) will add the directed edge (1,2,“blue”).

If G.multiedges=False, then a subsequent G.add edge(1,2,“red”) will change
the above edge (1,2,“blue”) into the edge (1,2,“red”).

On the other hand, if G.multiedges=True, then two successive calls to
G.add edge(1,2,“red”) will result in 2 edges of the form (1,2,“red”) that can not
be distinguished from one another.

If self.selfloops=False, then any attempt to create a self-loop with
add edge(n1,n1,x) will have no effect on the digraph and will not elicit a
warning.

Objects imbedded in the edges from n1 to n2 (if any), can be retrieved using
get edge(n1,n2), or calling edges(n1) or edge iter(n1) to return all edges
attached to n1. Overrides: networkx.graph.Graph.add edge

add edges from(self, ebunch)

Add multiple directed edges to the digraph. ebunch: Container of edges. Each
edge e in container will be added using add edge(e). See add edge
documentation. The container must be iterable or an iterator. It is iterated
over once. Overrides: networkx.graph.Graph.add edges from

200



Class XDiGraph Module networkx.xdigraph

has edge(self, n1, n2=None, x=None)

Return True if digraph contains directed edge (n1,n2,x).

Can be called as G.has edge(n1,n2,x) or as G.has edge(e), where e=(n1,n2,x).

If x is unspecified, i.e. if called with an edge of the form e=(n1,n2), then
return True if there exists ANY edge from n1 to n2 (equivalent to
has successor(n1,n2)). Overrides: networkx.graph.Graph.has edge

has successor(self, n1, n2 )

Return True if node n1 has a successor n2.

Return True if there exists ANY edge (n1,n2,x) for some x.

has predecessor(self, n1, n2 )

Return True if node n1 has a predecessor n2.

Return True if there exists ANY edge (n2,n1,x) for some x.

get edge iter(self, u, v=None)

Return an iterator over the objects associated with each edge from node u to
node v.

get edge(self, u, v=None)

Return the objects associated with each edge from node u to node v.

If multiedges=False, a single object is returned. If multiedges=True, a list of
objects is returned. If no edge exists, None is returned. Overrides:
networkx.graph.Graph.get edge

201



Class XDiGraph Module networkx.xdigraph

delete multiedge(self, n1, n2 )

Delete all edges between nodes n1 and n2.

When there is only a single edge allowed between nodes (multiedges=False),
this just calls delete edge(n1,n2), otherwise (multiedges=True) all edges
between n1 and n2 are deleted.

delete edge(self, n1, n2=None, x=None, all=False)

Delete the directed edge (n1,n2,x) from the graph.

Can be called either as >>> G.delete edge(n1,n2,x) or as >>>

G.delete edge(e) where e=(n1,n2,x).

If called with an edge e=(n1,n2), or as G.delete edge(n1,n2) then the edge
(n1,n2,None) will be deleted.

If the edge does not exist, do nothing.

To delete all edges between n1 and n2 use >>> G.delete multiedges(n1,n2)
Overrides: networkx.graph.Graph.delete edge

delete edges from(self, ebunch)

Delete edges in ebunch from the graph.

ebunch: Container of edges. Each edge must be a 3-tuple (n1,n2,x) or a
2-tuple (n1,n2). The container must be iterable or an iterator, and is iterated
over once.

Edges that are not in the graph are ignored. Overrides:
networkx.graph.Graph.delete edges from

202



Class XDiGraph Module networkx.xdigraph

out edges iter(self, nbunch=None)

Return iterator that iterates once over each edge pointing out of nodes in
nbunch, or over all edges in digraph if no nodes are specified.

See edges() for definition of nbunch.

Nodes in nbunch that are not in the graph will be (quietly) ignored.
Overrides: networkx.digraph.DiGraph.out edges iter

in edges iter(self, nbunch=None)

Return iterator that iterates once over each edge pointing in to nodes in
nbunch, or over all edges in digraph if no nodes are specified.

See edges() for definition of nbunch.

Nodes in nbunch that are not in the graph will be (quietly) ignored.
Overrides: networkx.digraph.DiGraph.in edges iter

successors iter(self, n)

Return an iterator of nodes pointing out of node n.

Returns the same data as out edges(n) but in a different format. Overrides:
networkx.digraph.DiGraph.successors iter

predecessors iter(self, n)

Return an iterator of nodes pointing in to node n.

Returns the same data as in edges(n) but in a different format. Overrides:
networkx.digraph.DiGraph.predecessors iter

203



Class XDiGraph Module networkx.xdigraph

edges iter(self, nbunch=None)

Return iterator that iterates once over each edge pointing out of nodes in
nbunch, or over all edges in digraph if no nodes are specified.

See edges() for definition of nbunch.

Nodes in nbunch that are not in the graph will be (quietly) ignored.
Overrides: networkx.graph.Graph.edges iter

neighbors iter(self, n)

Return an iterator of nodes pointing out of node n.

Returns the same data as out edges(n) but in a different format. Overrides:
networkx.graph.Graph.neighbors iter

predecessors(self, n)

Return predecessor nodes of n. Overrides:
networkx.digraph.DiGraph.predecessors

successors(self, n)

Return sucessor nodes of n. Overrides: networkx.digraph.DiGraph.successors

neighbors(self, n)

Return sucessor nodes of n. Overrides: networkx.graph.Graph.neighbors

in degree iter(self, nbunch=None, with labels=False)

Return iterator for in degree(n) or (n,in degree(n)) for all n in nbunch.

If nbunch is ommitted, then iterate over all nodes.

See degree iter method for more details. Overrides:
networkx.digraph.DiGraph.in degree iter

204



Class XDiGraph Module networkx.xdigraph

out degree iter(self, nbunch=None, with labels=False)

Return iterator for out degree(n) or (n,out degree(n)) for all n in nbunch.

If nbunch is ommitted, then iterate over all nodes.

See degree iter method for more details. Overrides:
networkx.digraph.DiGraph.out degree iter

degree iter(self, nbunch=None, with labels=False)

Return iterator that returns in degree(n)+out degree(n) or
(n,in degree(n)+out degree(n)) for all n in nbunch. If nbunch is ommitted,
then iterate over all nodes.

Can be called in three ways: G.degree iter(n): return iterator the degree of
node n G.degree iter(nbunch): return a list of values, one for each n in nbunch
(nbunch is any iterable container of nodes.) G.degree iter(): same as nbunch
= all nodes in graph.

If with labels=True, iterator will return an (n,in degree(n)+out degree(n))
tuple of node and degree.

Any nodes in nbunch but not in the graph will be (quietly) ignored.
Overrides: networkx.graph.Graph.degree iter

nodes with selfloops(self )

Return list of all nodes having self-loops.

selfloop edges(self )

Return all edges that are self-loops.

number of selfloops(self )

Return number of self-loops in graph.

205



Class XDiGraph Module networkx.xdigraph

allow selfloops(self )

Henceforth allow addition of self-loops (edges from a node to itself).

This doesn’t change the graph structure, only what you can do to it.

remove all selfloops(self )

Remove self-loops from the graph (edges from a node to itself).

ban selfloops(self )

Remove self-loops from the graph and henceforth do not allow their creation.

allow multiedges(self )

Henceforth allow addition of multiedges (more than one edge between two
nodes).

Warning: This causes all edge data to be converted to lists.

remove all multiedges(self )

Remove multiedges retaining the data from the first edge

ban multiedges(self )

Remove multiedges retaining the data from the first edge. Henceforth do not
allow multiedges.

206



Class XDiGraph Module networkx.xdigraph

subgraph(self, nbunch, inplace=False, create using=None)

Return the subgraph induced on nodes in nbunch.

nbunch: can be a single node or any iterable container of of nodes. (It can be
an iterable or an iterator, e.g. a list, set, graph, file, numeric array, etc.)

Setting inplace=True will return induced subgraph in original graph by
deleting nodes not in nbunch. It overrides any setting of create using.

WARNING: specifying inplace=True makes it easy to destroy the graph.

Unless otherwise specified, return a new graph of the same type as self. Use
(optional) create using=R to return the resulting subgraph in R. R can be an
existing graph-like object (to be emptied) or R can be a call to a graph object,
e.g. create using=DiGraph(). See documentation for empty graph()

Note: use subgraph(G) rather than G.subgraph() to access the more general
subgraph() function from the operators module. Overrides:
networkx.graph.Graph.subgraph

copy(self )

Return a (shallow) copy of the digraph.

Return a new XDiGraph with same name and same attributes for selfloop and
multiededges. Each node and each edge in original graph are added to the
copy. Overrides: networkx.graph.Graph.copy

207



Class XDiGraph Module networkx.xdigraph

to undirected(self )

Return the underlying graph of G.

The underlying graph is its undirected representation: each directed edge is
replaced with an undirected edge.

If multiedges=True, then an XDiGraph with only two directed edges
(1,2,“red”) and (2,1,“blue”) will be converted into an XGraph with two
undirected edges (1,2,“red”) and (1,2,“blue”). Two directed edges (1,2,“red”)
and (2,1,“red”) will result in in two undirected edges (1,2,“red”) and (1,2,“red”).

If multiedges=False, then two directed edges (1,2,“red”) and (2,1,“blue”) can
only result in one undirected edge, and there is no guarantee which one it is.
Overrides: networkx.graph.Graph.to undirected

reverse(self )

Return a new digraph with the same vertices and edges as self but with the
directions of the edges reversed. Overrides: networkx.digraph.DiGraph.reverse

number of edges(self, u=None, v=None, x=None)

Return the number of edges between nodes u and v.

If u and v are not specified return the number of edges in the entire graph.

The edge argument e=(u,v) can be specified as G.number of edges(u,v) or
G.number of edges(e) Overrides: networkx.graph.Graph.number of edges

Inherited from networkx.digraph.DiGraph(Section 9.2)

add node(), add nodes from(), clear(), delete node(), delete nodes from(), in degree(),
in edges(), in neighbors(), is directed(), out degree(), out edges(), out neighbors(),
to directed()

Inherited from networkx.graph.Graph(Section 28.2)

contains (), getitem (), iter (), len (), str (), add cycle(), add path(),
degree(), edge boundary(), edges(), has neighbor(), has node(), info(), node boundary(),
nodes(), nodes iter(), number of nodes(), order(), prepare nbunch(), size()

Inherited from object

208



Class XDiGraph Module networkx.xdigraph

delattr (), format (), getattribute (), hash (), new (), reduce (),
reduce ex (), repr (), setattr (), sizeof (), subclasshook ()

56.2.2 Properties

Name Description

Inherited from object

class

209



Class XGraph Module networkx.xgraph

57 Module networkx.xgraph

Base class for XGraph.

XGraph allows self-loops and multiple edges with arbitrary (hashable) objects as nodes
and arbitrary objects associated with edges.

Examples Create an empty graph structure (a“null graph”) with no nodes and no edges

>>> from networkx import *

>>> G=XGraph() # default no self-loops, no multiple edges

You can add nodes in the same way as the simple Graph class >>> G.add nodes from(xrange(100,110))

You can add edges as for simple Graph class, but with optional edge data/labels/objects.

>>> G.add_edges_from([(1,2,0.776),(1,3,0.535)])

For graph coloring problems, one could use >>> G.add edges from([(1,2,“blue”),(1,3,“red”)])
Author: Aric Hagberg (hagberg@lanl.gov) Pieter Swart (swart@lanl.gov) Dan Schult(dschult@colgate.edu

57.1 Variables

Name Description

package Value: ’networkx’

57.2 Class XGraph

object

networkx.graph.Graph

networkx.xgraph.XGraph

A class implementing general undirected graphs, allowing (optional) self-loops, multiple
edges, arbitrary (hashable) objects as nodes and arbitrary objects associated with edges.

An XGraph edge is specified by a 3-tuple e=(n1,n2,x), where n1 and n2 are nodes
(hashable objects) and x is an arbitrary (and not necessarily unique) object associated
with that edge.

>>> G=XGraph()

210



Class XGraph Module networkx.xgraph

creates an empty simple and undirected graph (no self-loops or multiple edges allowed).
It is equivalent to the expression:

>>> G=XGraph(name=’’,selfloops=False,multiedges=False)

>>> G=XGraph(name="empty",multiedges=True)

creates an empty graph with G.name=“empty”, that does not allow the addition of
self-loops but does allow for multiple edges.

See also the XDiGraph class.

XGraph inherits from Graph, overriding the following methods:

• init

• add edge

• add edges from

• has edge, has neighbor

• get edge

• edges iter

• delete edge

• delete edges from

• degree iter

• to directed

• copy

• subgraph

XGraph adds the following methods to those of Graph:

• delete multiedge

• nodes with selfloops

• selfloop edges

• number of selfloops

• allow selfloops

• remove all selfloops

• ban selfloops

• allow multiedges

211



Class XGraph Module networkx.xgraph

• remove all multiedges

• ban multiedges

57.2.1 Methods

init (self, data=None, name=’’, selfloops=False, multiedges=False)

Initialize XGraph.

Optional arguments:: name: graph name (default=”) selfloops: if True
selfloops are allowed (default=False) multiedges: if True multiple edges are
allowed (default=False) Overrides: object. init

getitem (self, n)

Return the neighbors of node n as a list.

This provides graph G the natural property that G[n] returns the neighbors of
G. Overrides: networkx.graph.Graph. getitem

212



Class XGraph Module networkx.xgraph

add edge(self, n1, n2=None, x=None)

Add a single edge to the graph.

Can be called as G.add edge(n1,n2,x) or as G.add edge(e), where e=(n1,n2,x).

n1,n2 are node objects, and are added to the Graph if not already present.
Nodes must be hashable Python objects (except None).

x is an arbitrary (not necessarily hashable) object associated with this edge. It
can be used to associate one or more: labels, data records, weights or any
arbirary objects to edges. The default is the Python None.

For example, if the graph G was created with

>>> G=XGraph()

then G.add edge(1,2,“blue”) will add the edge (1,2,“blue”).

If G.multiedges=False, then a subsequent G.add edge(1,2,“red”) will change
the above edge (1,2,“blue”) into the edge (1,2,“red”).

If G.multiedges=True, then two successive calls to G.add edge(1,2,“red”) will
result in 2 edges of the form (1,2,“red”) that can not be distinguished from one
another.

G.add edge(1,2,“green”) will add both edges (1,2,X) and (2,1,X).

If self.selfloops=False, then calling add edge(n1,n1,x) will have no effect on the
Graph.

Objects associated to an edge can be retrieved using edges(), edge iter(), or
get edge(). Overrides: networkx.graph.Graph.add edge

add edges from(self, ebunch)

Add multiple edges to the graph.

ebunch: Container of edges. Each edge must be a 3-tuple (n1,n2,x) or a
2-tuple (n1,n2). See add edge documentation.

The container must be iterable or an iterator. It is iterated over once.
Overrides: networkx.graph.Graph.add edges from

213



Class XGraph Module networkx.xgraph

has edge(self, n1, n2=None, x=None)

Return True if graph contains edge (n1,n2,x).

Can be called as G.has edge(n1,n2,x) or as G.has edge(e), where e=(n1,n2,x).

If x is unspecified or None, i.e. if called with an edge of the form e=(n1,n2),
then return True if there exists ANY edge between n1 and n2 (equivalent to
has neighbor(n1,n2)) Overrides: networkx.graph.Graph.has edge

has neighbor(self, n1, n2 )

Return True if node n1 has neighbor n2.

Note that this returns True if there exists ANY edge (n1,n2,x) for some x.
Overrides: networkx.graph.Graph.has neighbor

neighbors iter(self, n)

Return an iterator of nodes connected to node n.

Returns the same data as edges(n) but in a different format. Overrides:
networkx.graph.Graph.neighbors iter

neighbors(self, n)

Return a list of nodes connected to node n. Overrides:
networkx.graph.Graph.neighbors

get edge iter(self, u, v)

Return an iterator over the objects associated with each edge from node u to
node v.

214



Class XGraph Module networkx.xgraph

get edge(self, u, v)

Return the objects associated with each edge from node u to node v.

If multiedges=False, a single object is returned. If multiedges=True, a list of
objects is returned. If no edge exists, None is returned. Overrides:
networkx.graph.Graph.get edge

edges iter(self, nbunch=None)

Return iterator that iterates once over each edge adjacent to nodes in nbunch,
or over all nodes in graph if nbunch=None.

If nbunch is None return all edges in the graph. The argument nbunch can be
any single node, or any sequence or iterator of nodes. Nodes in nbunch that
are not in the graph will be (quietly) ignored. Overrides:
networkx.graph.Graph.edges iter

delete multiedge(self, n1, n2 )

Delete all edges between nodes n1 and n2.

When there is only a single edge allowed between nodes (multiedges=False),
this just calls delete edge(n1,n2) otherwise (multiedges=True) all edges
between n1 and n2 are deleted.

215



Class XGraph Module networkx.xgraph

delete edge(self, n1, n2=None, x=None)

Delete the edge (n1,n2,x) from the graph.

Can be called either as

>>> G.delete_edge(n1,n2,x)

or

>>> G.delete_edge(e)

where e=(n1,n2,x).

The default edge data is x=None

If called with an edge e=(n1,n2), or as G.delete edge(n1,n2) then the edge
(n1,n2,None) will be deleted.

If the edge does not exist, do nothing.

To delete all edges between n1 and n2 use >>> G.delete multiedges(n1,n2)
Overrides: networkx.graph.Graph.delete edge

delete edges from(self, ebunch)

Delete edges in ebunch from the graph.

ebunch: Container of edges. Each edge must be a 3-tuple (n1,n2,x) or a
2-tuple (n1,n2). In the latter case all edges between n1 and n2 will be deleted.
See delete edge.

The container must be iterable or an iterator, and is iterated over once. Edges
that are not in the graph are ignored. Overrides:
networkx.graph.Graph.delete edges from

degree iter(self, nbunch=None, with labels=False)

This is the degree() method returned in iterator form. If with labels=True,
iterator yields 2-tuples of form (n,degree(n)) (like iteritems() on a dict.)
Overrides: networkx.graph.Graph.degree iter

216



Class XGraph Module networkx.xgraph

copy(self )

Return a (shallow) copy of the graph.

Return a new XGraph with same name and same attributes for selfloop and
multiededges. Each node and each edge in original graph are added to the
copy. Overrides: networkx.graph.Graph.copy

to directed(self )

Return a directed representation of the XGraph G.

A new XDigraph is returned with the same name, same nodes and with each
edge (u,v,x) replaced by two directed edges (u,v,x) and (v,u,x). Overrides:
networkx.graph.Graph.to directed

nodes with selfloops(self )

Return list of all nodes having self-loops.

selfloop edges(self )

Return all edges that are self-loops.

number of selfloops(self )

Return number of self-loops in graph.

allow selfloops(self )

Henceforth allow addition of self-loops (edges from a node to itself).

This doesn’t change the graph structure, only what you can do to it.

217



Class XGraph Module networkx.xgraph

remove all selfloops(self )

Remove self-loops from the graph (edges from a node to itself).

ban selfloops(self )

Remove self-loops from the graph and henceforth do not allow their creation.

allow multiedges(self )

Henceforth allow addition of multiedges (more than one edge between two
nodes).

Warning: This causes all edge data to be converted to lists.

remove all multiedges(self )

Remove multiedges retaining the data from the first edge

ban multiedges(self )

Remove multiedges retaining the data from the first edge. Henceforth do not
allow multiedges.

218



Class XGraph Module networkx.xgraph

subgraph(self, nbunch, inplace=False, create using=None)

Return the subgraph induced on nodes in nbunch.

nbunch: can be a single node or any iterable container of of nodes. (It can be
an iterable or an iterator, e.g. a list, set, graph, file, numeric array, etc.)

Setting inplace=True will return induced subgraph in original graph by
deleting nodes not in nbunch. It overrides any setting of create using.

WARNING: specifying inplace=True makes it easy to destroy the graph.

Unless otherwise specified, return a new graph of the same type as self. Use
(optional) create using=R to return the resulting subgraph in R. R can be an
existing graph-like object (to be emptied) or R can be a call to a graph object,
e.g. create using=DiGraph(). See documentation for empty graph()

Note: use subgraph(G) rather than G.subgraph() to access the more general
subgraph() function from the operators module. Overrides:
networkx.graph.Graph.subgraph

number of edges(self, u=None, v=None, x=None)

Return the number of edges between nodes u and v.

If u and v are not specified return the number of edges in the entire graph.

The edge argument e=(u,v) can be specified as G.number of edges(u,v) or
G.number of edges(e) Overrides: networkx.graph.Graph.number of edges

Inherited from networkx.graph.Graph(Section 28.2)

contains (), iter (), len (), str (), add cycle(), add node(), add nodes from(),
add path(), clear(), degree(), delete node(), delete nodes from(), edge boundary(),
edges(), has node(), info(), is directed(), node boundary(), nodes(), nodes iter(),
number of nodes(), order(), prepare nbunch(), size(), to undirected()

Inherited from object

delattr (), format (), getattribute (), hash (), new (), reduce (),
reduce ex (), repr (), setattr (), sizeof (), subclasshook ()

57.2.2 Properties

219



Class XGraph Module networkx.xgraph

Name Description

Inherited from object

class

220


	Contents
	Package networkx
	NetworkX
	Graph classes
	Notation
	Methods
	Implementation Notes

	Modules
	Variables
	Module networkx.centrality
	Functions
	Variables


	Module networkx.cliques
	Functions
	Variables

	Module networkx.cluster
	Functions
	Variables


	Module networkx.component
	Functions
	Variables

	Module networkx.convert
	Functions
	Variables

	Module networkx.cores
	Functions
	Variables

	Module networkx.dag
	Functions
	Variables

	Module networkx.digraph
	Variables
	Class DiGraph
	Methods
	Properties


	Module networkx.distance
	Functions
	Variables

	Package networkx.drawing
	Modules
	Variables

	Module networkx.drawing.layout
	Functions
	Variables

	Module networkx.drawing.nx_agraph
	Functions
	Variables

	Module networkx.drawing.nx_pydot
	Functions
	Variables

	Module networkx.drawing.nx_pylab
	Functions
	Variables

	Module networkx.drawing.nx_vtk
	Functions
	Variables

	Module networkx.exception
	Variables
	Class NetworkXException
	Methods
	Properties

	Class NetworkXError
	Methods
	Properties


	Module networkx.function
	Functions
	Variables

	Package networkx.generators
	Modules
	Variables

	Module networkx.generators.atlas
	Functions
	Variables

	Module networkx.generators.bipartite
	Functions
	Variables

	Module networkx.generators.classic
	Functions
	Variables

	Module networkx.generators.degree_seq
	Functions
	Variables

	Module networkx.generators.directed
	Functions
	Variables

	Module networkx.generators.geometric
	Functions
	Variables

	Module networkx.generators.random_graphs
	Functions
	Variables

	Module networkx.generators.small
	Functions
	Variables

	Module networkx.graph
	Examples
	Variables
	Class Graph
	Methods
	Properties


	Module networkx.hybrid
	Functions
	Variables

	Module networkx.info
	Graph classes
	Notation
	Methods
	Implementation Notes

	Variables

	Module networkx.isomorph
	Functions
	Variables

	Module networkx.isomorphvf2
	Variables
	Class GraphMatcher
	Methods
	Properties

	Class DiGraphMatcher
	Methods
	Properties

	Class GMState
	Methods
	Properties
	Class Variables

	Class DiGMState
	Methods
	Properties
	Class Variables


	Module networkx.operators
	Functions
	Variables

	Module networkx.path
	Functions
	Variables

	Package networkx.readwrite
	Modules
	Variables

	Module networkx.readwrite.adjlist
	Functions
	Variables

	Module networkx.readwrite.edgelist
	Functions
	Variables

	Module networkx.readwrite.gml
	Functions
	Variables

	Module networkx.readwrite.gpickle
	Functions
	Variables

	Module networkx.readwrite.graphml
	Functions
	Variables

	Module networkx.readwrite.leda
	Functions
	Variables

	Module networkx.readwrite.nx_yaml
	Functions
	Variables

	Module networkx.readwrite.sparsegraph6
	Functions
	Variables

	Module networkx.release
	Variables

	Module networkx.search
	Functions
	Variables

	Module networkx.spectrum
	Functions
	Variables

	Package networkx.tests
	Modules
	Variables

	Module networkx.tests.benchmark
	Variables
	Class Benchmark
	Methods
	Properties


	Package networkx.tests.drawing
	Variables

	Package networkx.tests.generators
	Variables

	Package networkx.tests.readwrite
	Variables

	Module networkx.tests.test
	Functions
	Variables

	Module networkx.threshold
	Functions
	Variables

	Module networkx.tree
	Variables
	Class Tree
	Methods
	Properties

	Class RootedTree
	Methods
	Properties

	Class DirectedTree
	Methods
	Properties

	Class Forest
	Methods
	Properties

	Class DirectedForest
	Methods
	Properties


	Module networkx.utils
	Functions
	Variables

	Module networkx.xdigraph
	Variables
	Class XDiGraph
	Methods
	Properties


	Module networkx.xgraph
	Examples
	Variables
	Class XGraph
	Methods
	Properties



